【高校数学】できたらすごい~共通テスト数学ⅠA第4問解説~【大学受験】 - 質問解決D.B.(データベース)

【高校数学】できたらすごい~共通テスト数学ⅠA第4問解説~【大学受験】

問題文全文(内容文):
(3) (2)の考察は不定方程式$5^5x-2^5y=1\cdots②$の整数解を調べるために利用できる。
$x,y$を②の整数解とすると$5^5x$は$5^5$の倍数であり、$2^5$で割ったときの余りは1となる。
よって(2)により、$5^5x-{625}^2$は$5^5$でも$2^5$割り切れる。$5^5$と$2^5$は互いに素なので、$5^5x-{625}^2$は$5^5\cdot2^5$の倍数である。このことから、②の整数解のうち、$x$が3桁の正の整数で最小になるのは、$x=$サシス, $y=$セソタチツであることがわかる。
単元: #数A#大学入試過去問(数学)#整数の性質#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(3) (2)の考察は不定方程式$5^5x-2^5y=1\cdots②$の整数解を調べるために利用できる。
$x,y$を②の整数解とすると$5^5x$は$5^5$の倍数であり、$2^5$で割ったときの余りは1となる。
よって(2)により、$5^5x-{625}^2$は$5^5$でも$2^5$割り切れる。$5^5$と$2^5$は互いに素なので、$5^5x-{625}^2$は$5^5\cdot2^5$の倍数である。このことから、②の整数解のうち、$x$が3桁の正の整数で最小になるのは、$x=$サシス, $y=$セソタチツであることがわかる。
投稿日:2022.01.20

<関連動画>

ウィルソンの定理

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(p-1)!+1$は$p$の倍数であることを示せ.
この動画を見る 

正方形を折り曲げる 筑波大附属

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
BDを折り目として直角に折り曲げた時四面体ABCDの表面積は?
*図は動画内参照
筑波大学付属高等学校
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(1)〜倍数の個数を数える

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)1から1000までの整数のうち、2,3,5の少なくとも2つで割り切れる数
は$\boxed{\ \ アイウ\ \ }$個あり、2,3,5の少なくとも1つで割り切れ、
かつ6で割り切れない数は$\boxed{\ \ エオカ\ \ }$個ある。

2022慶應義塾大学商学部過去問
この動画を見る 

この長さを求める 国立高専←漢字間違えてしまいました。

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\stackrel{\huge\frown}{BE}$=?
*図は動画内参照

国立高専
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(1)〜外から引いた接線と三角形の面積の最大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)0<$b$<100 を満たす実数$b$に対し、点(10,$b$)から放物線$C$:$y$=$x^2$に相異なる2本の接線を引き、この2本の接線の$C$における接点をそれぞれ$P_1$, $P_2$とする。実数$b$が0<$b$<100の範囲で動くとき、3角形$OP_1P_2$の面積の最大値を求めよ。ただし、Oは原点を表す。
この動画を見る 
PAGE TOP