センター試験・共通テスト関連 - 質問解決D.B.(データベース) - Page 2

センター試験・共通テスト関連

【篠原共通塾】2021年度「数学1A」共通テスト過去問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2021年度「数学1A」共通テスト過去問解説です。
この動画を見る 

【篠原共通塾】2021年度「数学2B」共通テスト過去問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2021年度共通テスト「数学2B」の解説動画です。
この動画を見る 

戦う準備はできているか。共通テストまで残り40日

アイキャッチ画像
単元: #化学#生物#情報Ⅰ(高校生)#センター試験・共通テスト関連#共通テスト#英語(高校生)#国語(高校生)#社会(高校生)#世界史#共通テスト#共通テスト(現代文)#共通テスト・センター試験#共通テスト(古文)#共通テスト#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学(高校生)#理科(高校生)#数学#共通テスト#英語#化学#物理#共通テスト#共通テスト#共通テスト#共通テスト#【河合塾】全統共通テスト模試
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テストまで40日。点数アップのための方法解説動画です
この動画を見る 

【篠原共通塾】2022年度「数学2B」共通テスト過去問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2022年度共通テスト「数学2B」の解説動画です。
この動画を見る 

【篠原共通塾】2022年度「数学1A」共通テスト過去問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2022年度共通テスト「数学1A」の解説動画
この動画を見る 

【12月勉強】この優先順位で勉強すると伸びます。

アイキャッチ画像
単元: #大学入試過去問(数学)#物理#化学#生物#センター試験・共通テスト関連#共通テスト#その他#大学入試過去問(物理)#大学入試過去問(化学)#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#勉強法・その他#大学入試過去問(英語)#大学入試過去問(国語)#共通テスト#共通テスト(現代文)#勉強法#勉強法#その他#大学入試過去問(生物)#共通テスト・センター試験#共通テスト(古文)#共通テスト#勉強法#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学(高校生)#理科(高校生)#大学入試解答速報#数学#共通テスト#英語#化学#物理#共通テスト#共通テスト#共通テスト#共通テスト#世界史#共通テスト
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
12月の勉強法 優先順位説明動画です
この動画を見る 

福田の数学〜共通テスト対策にもってこい〜明治大学2023年全学部統一ⅠⅡAB第3問〜四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#空間における垂直と平行と多面体(オイラーの法則)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3 一辺の長さが6の正四面体ABCDにおいて、点Aから3点B,C,Dを含む平面に垂線AHを下ろす。また、辺ABを1:2に内分する点をP、辺ACを2:1に内分する点をQ、辺ADをt:1-tに内分する点をRとする。ただし、
0<t<1 とする。
(1)AHの長さは         であり、正四面体ABCDの体積は         である。
(2)AHと三角形PQRの交点をXとすると、AX=    AH である。
(3)三角形PQRの面積は    t2    t+     である。
(4)t=12 のとき、四面体APQRの体積は        で、点Aから3点P,Q,Rを通る平面に垂線AYを下ろすと、AYの長さは             である。
この動画を見る 

共通テストまで、あと90日。受験生がやるべきこと3選。

アイキャッチ画像
単元: #大学入試過去問(数学)#物理#化学#生物#センター試験・共通テスト関連#共通テスト#大学入試過去問(物理)#大学入試過去問(化学)#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#大学入試過去問(英語)#大学入試過去問(国語)#共通テスト#共通テスト(現代文)#その他#大学入試過去問(生物)#共通テスト・センター試験#共通テスト(古文)#共通テスト#勉強法#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学(高校生)#理科(高校生)#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通テストまで、あと90日。受験生がやるべきこと3選。
この動画を見る 

数学IIB、〇〇ができれば「50点」<共通テスト>

アイキャッチ画像
単元: #センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学IIB、最短で50点獲得する勉強法紹介動画です
この動画を見る 

【共通テスト】数IAを最短で50点にする方法はこれです。

アイキャッチ画像
単元: #センター試験・共通テスト関連#共通テスト#その他#勉強法#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数IAを最短で50点にする方法紹介動画です
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第3問確率分布〜正規分布と二項分布

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数B
指導講師: 福田次郎
問題文全文(内容文):
第3問
以下の問題を解答するにあたっては、必要に応じて43ページの正規分布表を用いてもよい。
(1)ある生産地で生産されるピーマン全体を母集団とし、この母集団におけるピーマン1個の重さ(単位はg)を表す確率変数をXとする。mとσを正の実数とし、Xは正規分布N(m, σ2)に従うとする。
(i)この母集団から1個のピーマンを無作為に抽出したとき、重さがm g以上である確率P(X≧m)は
P(X≧m)=P(Xmσ    )=        
である。
(ii)母集団から無作為に抽出された大きさnの標本X1, X2, ..., Xnの標本平均をX¯とする。X¯の平均(期待値)と標準偏差はそれぞれ
E(X¯)=    , σ(X¯)=    
となる。
n=400, 標本平均が30.0g, 標本の標準偏差が3.6gのとき、mの信頼度90%の信頼区間を次の方針で求めよう。
方針:Zを標準正規分布N(0,1)に従う確率変数として、P(z0Zz0)=0.901 となるz0を正規分布表から求める。このz0を用いるとmの信頼度90.1%の信頼区間が求められるが、これを信頼度90%の信頼区間とみなして考える。
方針において、z0=    .    である。
一般に、標本の大きさnが大きいときには、母標準偏差の代わりに、標本の標準偏差を用いてよいことが知られている。n=400は十分に大きいので、方針に基づくと、mの信頼度90%の信頼区間は    となる。
    ,     の解答群(同じものを繰り返し選んでもよい。)
⓪σ ①σ2 ②σn ③σ2n
④m ⑤2m ⑥m2 ⑦m 
σn ⑨nσ nm ⓑmn
    については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪28.6≦m≦31.4 ①28.7≦m≦31.3 ②28.9≦m≦31.1 
③29.6≦m≦30.4 ④29.7≦m≦30.3 ⑤29.9≦m≦30.1
(2)(1)の確率変数Xにおいて、m=30.0, σ=3.6とした母集団から無作為にピーマンを1個ずつ抽出し、ピーマン2個を1組にしたものを袋に入れていく。このようにしてピーマン2個を1組にしたものを25袋作る。その際、1袋ずつの重さの分数を小さくするために、次のピーマン分類法を考える。
ピーマン分類法:無作為に抽出したいくつかのピーマンについて、重さが30.0g以下のときをSサイズ、30.0gを超えるときはLサイズと分類する。そして、分類されたピーマンからSサイズとLサイズのピーマンを一つずつ選び、ピーマン2個を1組とした袋を作る。
(i)ピーマンを無作為に50個抽出した時、ピーマン分類法で25袋作ることができる確率p0を考えよう。無作為に1個抽出したピーマンがSサイズである確率は        である。ピーマンを無作為に50個抽出したときのSサイズのピーマンの個数を表す確率変数をU0とすると、U0は二項分布B(50,        )に従うので
p0=50C×(        )×(1        )50
となる。
p0を計算すると、p0=0.1122...となることから、ピーマンを無作為に50個抽出したとき、25袋作ることができる確率は0.11程度とわかる。
(ii)ピーマン分類法で25袋作ることができる確率が0.95以上となるようなピーマンの個数を考えよう。
kを自然数とし、ピーマンを無作為に(50+k)個抽出したとき、Sサイズのピーマンの個数を表す確率変数をUkとすると、Ukは二項分布B(50+k,        )に従う。
(50+k)は十分に大きいので、Ukは近似的に正規分布N(    ,    )に従い、Y=Uk        とすると、Yは近似的に標準正規分布N(0,1)に従う。
よって、ピーマン分類法で、25袋作ることができる確率をpkとすると
pk=P(25Uk25+k)=P(    50+kY    50+k)
となる。
    =a, 50+k=βとおく。
pk≧0.95になるようなαβについて、正規分布表からαβ≧1.96を満たせばよいことが分かる。ここでは
αβ≧2 ...①
を満たす自然数kを考えることとする。①の両辺は正であるから、α2≧4β2を満たす最小のkをk0とすると、k0=    であることがわかる。ただし、    の計算においては、51=7.14を用いてもよい。
したがって、少なくとも(50+    )個のピーマンを抽出しておけば、ピーマン分類法で25袋作ることができる確率は0.95以上となる。
        の解答群(同じものを繰り返し選んでもよい。)
⓪k ①2k ②3k ③50+k2
25+k2 ⑤25+k ⑥50+k2 ⑦50+k4

2023共通テスト過去問
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第5問ベクトル〜三角錐をベクトルで考える

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数C
指導講師: 福田次郎
問題文全文(内容文):
第5問
三角錐PABCにおいて、辺BCの中点をMとおく。また、PAB=PACとし、この角度をθをおく。0°< θ < 90°とする。
(1)AM
AM=        AB+        AC
と表せる。また
APAB|AP||AB|=APAC|AP||AC|=      ...①
    の解答群
sinθ ①cosθ ②tanθ 
1sinθ ④1cosθ ⑤1tanθ 
sinBPC ⑦cosBPC ⑧tanBPC
(2)θ=45°とし、さらに
|AP|=3√2, |AB|=|PB|=3, |AC|=|PC|=3
が成り立つ場合を考える。このとき
APAB=APAC=    
である。さらに、直線AM上の点DがAPD=90°を満たしているとする。このとき、AD=    AMである。
(3)
AQ=    AM
で定まる点をQとおく。PAPQが垂直である三角錐PABCはどのようなものかについて考えよう。例えば(2)の場合では、点Qは点Dと一致し、PAPQは垂直である。
(i)PAPQが垂直であるとき、PQAB,AC,APを用いて表して考えると、    が成り立つ。さらに①に注意すると、    から    が成り立つことがわかる。
したがって、PAPQが垂直であれば、    が成り立つ。逆に、    が成り立てば、PAPQは垂直である。
    の解答群
APAB+APAC=APAP
APAB+APAC=APAP
APAB+APAC=ABAC
APAB+APAC=ABAC
APAB+APAC=0
APAB-APAC=0
    の解答群
|AB|+|AC|=2|BC|
|AB|+|AC|=2|BC|
|AB|sinθ+|AC|sinθ=|AP|
|AB|cosθ+|AC|cosθ=|AP|
|AB|sinθ=|AC|sinθ=2|AP|
|AB|cosθ=|AC|cosθ=2|AP|
(ii)kを正の実数とし
kAPAB=APAC
が成り立つとする。このとき、    が成り立つ。
また、点Bから直線APに下ろした垂線と直線APとの交点をB'とし、同様に点Cから直線APに下ろした垂線と直線APとの交点をC'とする。
このとき、PAPQが垂直であることは、    であることと同値である。特にk=1のとき、PAPQが垂直であることは、    であることと同値である。
    の解答群
k|AB|=|AC| ①|AB|=k|AC| 
k|AP|=2|AB| ③k|AP|=2|AC|
    の解答群
⓪B'とC'がともに線分APの中点
①B'とC'が線分APをそれぞれ(k+1):1と1:(k+1)に内分する点
②B'とC'が線分APをそれぞれ1:(k+1)と(k+1):1に内分する点
③B'とC'が線分APをそれぞれk:1と1:kに内分する点
④B'とC'が線分APをそれぞれ1:kとk:1に内分する点
⑤B'とC'がともに線分APをk:1に内分する点
⑥B'とC'がともに線分APを1:kに内分する点
    の解答群
PABとPACがともに正三角形
PABとPACがそれぞれPBA=90°, PCA=90°を満たす直角二等辺三角形
PABとPACがそれぞれBP=BA, CP=CAを満たす二等辺三角形
PABとPACが合同
④AP=BC

2023共通テスト過去問
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第1問三角関数と対数〜三角不等式と対数が有理数とならない条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#ユークリッド互除法と不定方程式・N進法#三角関数#指数関数と対数関数#三角関数とグラフ#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第一問
[ 1 ] 三角関数の値の大小関係について考えよう。
(1) x=π6のときsinx    sin2xであり、x=23πのときsinx    sin2xである。
    ,     の解答群(同じものを繰り返し選んでもよい。)
⓪< ①= ②>
(2) sinxsin2xの値の大小関係を詳しく調べよう。
sin2x-sinx=sin2x(    cosx    )
であるから、sin2x-sinx>0が成り立つことは
sinx>0かつ     cosx    >0」... ①
sinx<0かつ     cosx    <0」... ②
が成り立つことと同値である。0x2πのとき、①が成り立つようなxの値の範囲は
0<x<π    
であり、②が成り立つようなxの値の範囲は
π<x<        π
である。よって、0x2πのとき、sin2x>sinxが成り立つようなxの値の範囲は
0<x<π    , π<x<        π
である。
(3)sin3xsin4xの値の大小関係を調べよう。
三角関数の加法定理を用いると、等式
sin(α+β)-sin(αβ)=2cosαsinβ...③
が得られる。α+β=4x, αβ=3xを満たすα, βに対して③を用いることにより、sin4xsin3x>0が成り立つことは
cos    >0 かつ sin    >0」...④
または
cos    <0 かつ sin    <0」...⑤
が成り立つことと同値であることがわかる。
0xπのとき、④,⑤により、sin4xsin3xが成り立つようなxの値の範囲は
0xπ    ,         π<x<        π
である。
    ,     の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①x ②2x ③3x
④4x ⑤5x ⑥6x ⑦x2 
32x ⑨52x ⓐ72x ⓑ92x
(4)(2), (3)の考察から、0xπのとき、sin3x>sin4x>sin2xが成り立つようなxの値の範囲は
π     < π    ,         π<x<        π
であることがわかる。
[ 2 ]
(1)a>0, a1, b>0のとき、logab=xとおくと、    が成り立つ。
    の解答群
xa=b ①xb=a ②ax=b
bx=a ④ab=x ⑤ba=x
(2)様々な対数の値が有理数か無理数かについて考えよう。
(i)log525=    , log927=        であり、どちらも有理数である。
(ii)log23が有理数と無理数のどちらかであるかを考えよう。
log23が有理数であると仮定すると、log23>0であるので、二つの自然数p, qを用いてlog23=pqと表すことができる。このとき、(1)によりlog23=pq    と変形できる。いま、2は偶数であり3は奇数であるので、    を満たす自然数p, qは存在しない。
したがって、log23は無理数であることがわかる。
(iii)a, bを2以上の自然数とするとき、(ii)と同様に考えると、「    ならばlogabは常に無理数である」ことがわかる。
    の解答群
⓪aが偶数 ①bが偶数 ②aが奇数 
③bが奇数 ④aとbがともに偶数、またはaとbがともに奇数 ⑤aとbのいずれか一方が偶数で、もう一方が奇数

2023共通テスト過去問
この動画を見る 

2023共通テスト 正弦定理で解く!?こんな解き方もあり?

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円の半径=5
sinACB=
*図は動画内参照

2023共通テスト数ⅠA
この動画を見る 

【満点続出】篠原塾の塾生の結果報告【共通テスト2023】

アイキャッチ画像
単元: #センター試験・共通テスト関連#共通テスト#その他#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通テスト2023の塾生の結果を報告動画です
この動画を見る 

共通テストだけど中学生も解ける!!

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABCの面積が最大になるとき△ABC=?
*点Cは円周上
*図は動画内参照

2023共通テスト数ⅠA
この動画を見る 

2023年共通テスト数学2B講評【まさかの和積の公式登場】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: ユーテラ授業チャンネル【YouTubeの寺子屋】
問題文全文(内容文):
2023年共通テスト「和積の公式」の講評です。
※問題文は動画内参照
この動画を見る 

2023年共通テスト数学1A講評【易化】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
2023年共通テスト数学1Aを講評します。

各問題の解き方や、注意すべき点を確認しましょう。

復習の参考にしましょう!
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第5問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 

【日本最速解答速報】共通テスト2023数学2B 第2問・第4問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 

【日本最速解答速報】共通テスト2023数学2B 第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第5問【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学1A 第5問解説していきます.
この動画を見る 

高校生あるある(共通テストの点数を報告した時の先生の反応)【篠原好】

アイキャッチ画像
単元: #センター試験・共通テスト関連#共通テスト#その他#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
受験生応援動画です。
この動画を見る 

【日本最速解答速報】共通テスト2023数学2B 第2問・第4問【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学2B 第2問・第4問解説していきます.
この動画を見る 

【日本最速解答速報】共通テスト2023数学2B 第1問【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学2B 第1問解説していきます.
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第2問(2)

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第2問(2)【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学1A 第2問(2)解説していきます.
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第4問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第4問【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学1A 第4問解説していきます.
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第3問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 
PAGE TOP preload imagepreload image