2次関数とグラフ
【数Ⅰ】【2次関数】2次関数の文章題3 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$AB=6\sqrt{3}、CA=9、∠C=90°$の三角形$ABC$がある。
点$P$は頂点$C$から$A$まで辺$CA$上を毎秒3の速さで進む。
点$Q$は$P$と同時に頂点$B$を出発し、頂点$C$まで辺$BC$上を毎秒$\sqrt{3}$の速さで進む。
この$P,Q$間の距離の最小値を求めよ。
この動画を見る
$AB=6\sqrt{3}、CA=9、∠C=90°$の三角形$ABC$がある。
点$P$は頂点$C$から$A$まで辺$CA$上を毎秒3の速さで進む。
点$Q$は$P$と同時に頂点$B$を出発し、頂点$C$まで辺$BC$上を毎秒$\sqrt{3}$の速さで進む。
この$P,Q$間の距離の最小値を求めよ。
【数Ⅰ】【2次関数】2次関数の文章題2 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
点$P(t,t^2)$は放物線$y=x^2$上の点で、2点$A(-1,1)、B(4,16)$の間にある。このとき、三角形$APB$の面積の最大値を求めよ。
この動画を見る
点$P(t,t^2)$は放物線$y=x^2$上の点で、2点$A(-1,1)、B(4,16)$の間にある。このとき、三角形$APB$の面積の最大値を求めよ。
【数Ⅰ】【2次関数】2次関数の文章題1 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
周囲の長さが24cmである長方形について、次の問いに答えよ。
(1) この長方形の面積の最大値を求めよ。また、そのとき、長方形はどのような形か。
(2) この長方形の対角線を1辺とする正方形の面積の最小値を求めよ。
この動画を見る
周囲の長さが24cmである長方形について、次の問いに答えよ。
(1) この長方形の面積の最大値を求めよ。また、そのとき、長方形はどのような形か。
(2) この長方形の対角線を1辺とする正方形の面積の最小値を求めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け11 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$f(x)=-x^2+2x+2(a\leqq x\leqq a+1)$の最大値を$M(a)$、最小値を$m(a)$とする。
(1)$M(a)$を求め、$b=M(a)$のグラフをかけ
(2)$m(a)$を求め、$b=m(a)$のグラフをかけ
この動画を見る
関数$f(x)=-x^2+2x+2(a\leqq x\leqq a+1)$の最大値を$M(a)$、最小値を$m(a)$とする。
(1)$M(a)$を求め、$b=M(a)$のグラフをかけ
(2)$m(a)$を求め、$b=m(a)$のグラフをかけ
【数Ⅰ】【2次関数】2次関数の最大最小場合分け10 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a$は定数とする。関数$y=x^2-2x+1(a\leqq x\leqq a+1)$について
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る
$a$は定数とする。関数$y=x^2-2x+1(a\leqq x\leqq a+1)$について
(1) 最小値を求めよ
(2) 最大値を求めよ
【数Ⅰ】【2次関数】2次関数の最大最小場合分け9 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$y=x^2-2x+m$の値が$0\leqq x\leqq 3$の範囲で常に負となるように、定数$m$の値の範囲を定めよ
この動画を見る
関数$y=x^2-2x+m$の値が$0\leqq x\leqq 3$の範囲で常に負となるように、定数$m$の値の範囲を定めよ
【数Ⅰ】【2次関数】2次関数の最大最小場合分け8 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a\gt 0$とする。関数$y=ax^2+2ax+b(-2\leqq x\leqq 1)$の最大値が6、最小値が3であるように、定数$a,b$の値を定めよ。
この動画を見る
$a\gt 0$とする。関数$y=ax^2+2ax+b(-2\leqq x\leqq 1)$の最大値が6、最小値が3であるように、定数$a,b$の値を定めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け7 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$y=x^2-2ax-a(0\leqq x\leqq 2)$の最小値が$-2$であるように、定数$a$の値を定めよ。
この動画を見る
関数$y=x^2-2ax-a(0\leqq x\leqq 2)$の最小値が$-2$であるように、定数$a$の値を定めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け6 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a\lt 0$とする。関数$y=-x^2+2ax+3a(0\leqq x\leqq 1)$の最小値が$-11$であるように、定数$a$の値を定めよ。
この動画を見る
$a\lt 0$とする。関数$y=-x^2+2ax+3a(0\leqq x\leqq 1)$の最小値が$-11$であるように、定数$a$の値を定めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け5 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$k$は定数とする。2次関数$y=x^2+2kx+k$の最小値を$m$とする。
(1) $m$は$k$の関数である。$m$を$k$の式で表せ。
(2) $k$の関数$m$の最大値とそのときの$k$の値を求めよ。
この動画を見る
$k$は定数とする。2次関数$y=x^2+2kx+k$の最小値を$m$とする。
(1) $m$は$k$の関数である。$m$を$k$の式で表せ。
(2) $k$の関数$m$の最大値とそのときの$k$の値を求めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け4 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a$を定数とする。
2次関数$y=-x^2+2ax(0\leqq x\leqq 1)$の最大値を$M(a)$とするとき、次の問いに答えよ。
(1) $M(a)$を求めよ
(2) $b=M(a)$のグラフをかけ。
この動画を見る
$a$を定数とする。
2次関数$y=-x^2+2ax(0\leqq x\leqq 1)$の最大値を$M(a)$とするとき、次の問いに答えよ。
(1) $M(a)$を求めよ
(2) $b=M(a)$のグラフをかけ。
【数Ⅰ】【2次関数】2次関数の対称移動3 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線y=2x²-4x+1を、直線y=-2に関して対称移動して得られる放物線の方程式を求めよ。
この動画を見る
放物線y=2x²-4x+1を、直線y=-2に関して対称移動して得られる放物線の方程式を求めよ。
【数Ⅰ】【2次関数】2次関数の対称移動2 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある放物線を、x軸方向にー1、y軸方向にー3だけ平行移動し、さらにx軸に関して対称移動をしたら、放物線y=x²-2x+2に移った。もとの放物線の方程式を求めよ。
この動画を見る
ある放物線を、x軸方向にー1、y軸方向にー3だけ平行移動し、さらにx軸に関して対称移動をしたら、放物線y=x²-2x+2に移った。もとの放物線の方程式を求めよ。
【数Ⅰ】【2次関数】2次関数の対称移動1 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の直線、放物線を、x軸、y軸、原点に関して、それぞれ対称移動して得られる直線、放物線の方程式を求めよ。
(1)y=-x+1
(2)y=2x²+x
(3)y=-x²-x-6
この動画を見る
次の直線、放物線を、x軸、y軸、原点に関して、それぞれ対称移動して得られる直線、放物線の方程式を求めよ。
(1)y=-x+1
(2)y=2x²+x
(3)y=-x²-x-6
【数Ⅰ】【2次関数】2次関数の平行移動4 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線$y=x^2-4x+3$を、次の方向に平行移動して原点を通るようにした放物線の方程式を求めよ。
(1)y軸方向
(2)x軸方向
この動画を見る
放物線$y=x^2-4x+3$を、次の方向に平行移動して原点を通るようにした放物線の方程式を求めよ。
(1)y軸方向
(2)x軸方向
【数Ⅰ】【2次関数】2次関数の平行移動3 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の放物線をx軸方向に1、y軸方向に-2だけ平行移動して得られる放物線の方程式を求めよ。
(1)$y=-x^2$
(2)$y=2x^2+4x$
(3)$y=3x^2+x-4$
この動画を見る
次の放物線をx軸方向に1、y軸方向に-2だけ平行移動して得られる放物線の方程式を求めよ。
(1)$y=-x^2$
(2)$y=2x^2+4x$
(3)$y=3x^2+x-4$
【数Ⅰ】【2次関数】2次関数の平行移動2 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線$y=x^2-4x+4$は、どのように平行移動すると放物線$y=x^2+2x-1$に重なるか。
この動画を見る
放物線$y=x^2-4x+4$は、どのように平行移動すると放物線$y=x^2+2x-1$に重なるか。
【数Ⅰ】【2次関数】2次関数の平行移動1 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線$y=-3x^2$を、頂点が次の点になるように平行移動するとき、移動後の放物線の方程式を求めよ。
(1)$(1,2)$
(2)$(-2,3)$
この動画を見る
放物線$y=-3x^2$を、頂点が次の点になるように平行移動するとき、移動後の放物線の方程式を求めよ。
(1)$(1,2)$
(2)$(-2,3)$
【数Ⅰ】【2次関数】2次関数の最大最小場合分け3 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
aは定数とする。関数$y=-x^2+4ax-2 (0\leqq x\leqq 2)$について、次の問いに答えよ。
(1) 最大値を求めよ。
(2) 最小値を求めよ。
この動画を見る
aは定数とする。関数$y=-x^2+4ax-2 (0\leqq x\leqq 2)$について、次の問いに答えよ。
(1) 最大値を求めよ。
(2) 最小値を求めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け2 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
aは定数とする。関数$y=3x^2-6ax+2 (0\leqq x\leqq 2)$について、次の問いに答えよ。
(1) 最小値を求めよ。
(2) 最大値を求めよ。
この動画を見る
aは定数とする。関数$y=3x^2-6ax+2 (0\leqq x\leqq 2)$について、次の問いに答えよ。
(1) 最小値を求めよ。
(2) 最大値を求めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け1 ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
aは正の定数とする。関数$y=x^2-2x-1 (0\leqq x\leqq a)$について、次の問いに答えよ。
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る
aは正の定数とする。関数$y=x^2-2x-1 (0\leqq x\leqq a)$について、次の問いに答えよ。
(1) 最小値を求めよ
(2) 最大値を求めよ
【数Ⅰ】【2次関数】関数の場合分け ※問題文は概要欄
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1) y=-x+2 (x<2) , y=x-2 (x≧2)
(2) y=1 (x<0) , y=x+1 (x≧0)
(3) y=x² (x<0) , y=x (0≦x<1) , y=-x²+2x (1≦x)
この動画を見る
次の関数のグラフをかけ。
(1) y=-x+2 (x<2) , y=x-2 (x≧2)
(2) y=1 (x<0) , y=x+1 (x≧0)
(3) y=x² (x<0) , y=x (0≦x<1) , y=-x²+2x (1≦x)
【数学】中高一貫校用問題集数式・関数編:2次関数の決定
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)$x^2$の係数が2で、そのグラフが点(1,3)を通り、頂点が直線$y=2x-3$上にあるような2次関数を求めよ。
(2)2次関数$y=x^2-2ax+b$のグラフが点(1,3)を通り、頂点が直線$y=x-10$上にあるとき、定数a,bの値を求めよ。
(3)2次関数$y=2x^2+ax+b$のグラフが点(3,5)を通り、頂点が直線$y=2x-5$上にあるとき、定数a,bの値を求めよ。
この動画を見る
次の問いに答えよ。
(1)$x^2$の係数が2で、そのグラフが点(1,3)を通り、頂点が直線$y=2x-3$上にあるような2次関数を求めよ。
(2)2次関数$y=x^2-2ax+b$のグラフが点(1,3)を通り、頂点が直線$y=x-10$上にあるとき、定数a,bの値を求めよ。
(3)2次関数$y=2x^2+ax+b$のグラフが点(3,5)を通り、頂点が直線$y=2x-5$上にあるとき、定数a,bの値を求めよ。
福田の数学〜名古屋大学2024年文系第2問〜放物線と直線の関係
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $t$を0でない実数として、$x$の関数$y$=$-x^2$+$tx$+$t$ のグラフを$C$とする。
(1)$C$上において$y$座標が最大となる点Pの座標を求めよ。
(2)Pと点O(0,0)を通る直線を$l$とする。$l$と$C$がP以外の共有点Qを持つために$t$が満たすべき条件を求めよ。また、そのとき、点Qの座標を求めよ。
(3)$t$は(2)の条件を満たすとする。A(-1,-2)として、$X$=$\displaystyle\frac{1}{4}t^2$+$t$ とおくとき、AP$^2$-AQ$^2$を$X$で表せ。また、AP<AQとなるために$t$が満たすべき条件を求めよ。
この動画を見る
$\Large\boxed{2}$ $t$を0でない実数として、$x$の関数$y$=$-x^2$+$tx$+$t$ のグラフを$C$とする。
(1)$C$上において$y$座標が最大となる点Pの座標を求めよ。
(2)Pと点O(0,0)を通る直線を$l$とする。$l$と$C$がP以外の共有点Qを持つために$t$が満たすべき条件を求めよ。また、そのとき、点Qの座標を求めよ。
(3)$t$は(2)の条件を満たすとする。A(-1,-2)として、$X$=$\displaystyle\frac{1}{4}t^2$+$t$ とおくとき、AP$^2$-AQ$^2$を$X$で表せ。また、AP<AQとなるために$t$が満たすべき条件を求めよ。
二次関数と変域 2024明大中野
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$y=\frac{1}{3}x^2$について、xの変域が$a-6 \leqq x \leqq a$のとき、yの変域は$0 \leqq y \leqq 9$となる。
aの値をすべて求めよ。
2024明治大学付属中野高等学校
この動画を見る
$y=\frac{1}{3}x^2$について、xの変域が$a-6 \leqq x \leqq a$のとき、yの変域は$0 \leqq y \leqq 9$となる。
aの値をすべて求めよ。
2024明治大学付属中野高等学校
2024年共通テスト徹底解説〜数学ⅠA第2問(1)2次関数〜福田の入試問題解説
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅠA第2問(2)2次関数を徹底解説します
2024共通テスト過去問
この動画を見る
共通テスト2024の数学ⅠA第2問(2)2次関数を徹底解説します
2024共通テスト過去問
ガウス記号!これは取りたい!【早稲田大学】【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の等式を満たす最大の整数aは、a=?である。
[$\displaystyle \frac{a}{2}$]+[$\displaystyle \frac{2a}{3}$]=a
但し、実数xに対して、$\lbrack x \rbrack$は、x以下の最大の整数を表す。
早稲田大過去問
この動画を見る
次の等式を満たす最大の整数aは、a=?である。
[$\displaystyle \frac{a}{2}$]+[$\displaystyle \frac{2a}{3}$]=a
但し、実数xに対して、$\lbrack x \rbrack$は、x以下の最大の整数を表す。
早稲田大過去問
共テ数学90%取る勉強法
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る
共通テスト数学90%取る勉強法説明動画です
数学どうにかしたい人へ
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
福田のおもしろ数学~第1回〜どっちがお得〜1年ごとに10万円昇給と半年ごとに3万円昇給
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
ある社員に2つの昇給プランが提示された。
プランA:年俸は1年に1回支払われ、毎回10万円昇給する。
プランB:年棒は半年に1回支払われ、毎回3万円昇給する。
どちらのプランを選ぶべきか?
この動画を見る
ある社員に2つの昇給プランが提示された。
プランA:年俸は1年に1回支払われ、毎回10万円昇給する。
プランB:年棒は半年に1回支払われ、毎回3万円昇給する。
どちらのプランを選ぶべきか?