動く2点の距離の最小値【大阪大学】【数学 入試問題】 - 質問解決D.B.(データベース)

動く2点の距離の最小値【大阪大学】【数学 入試問題】

問題文全文(内容文):
$C_1:x^2+\displaystyle \frac{y^2}{a^2}=1,C_2:y=2ax-3a$

点Pが$C_1$,点Qが$C_2$上を動く。
線分 PQ の長さの最小値をαを用いて表せ。

大阪大学過去問
チャプター:

00:04 問題文
00:45 (1)解答・解説
06:18 (2)解答・解説

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$C_1:x^2+\displaystyle \frac{y^2}{a^2}=1,C_2:y=2ax-3a$

点Pが$C_1$,点Qが$C_2$上を動く。
線分 PQ の長さの最小値をαを用いて表せ。

大阪大学過去問
投稿日:2024.01.10

<関連動画>

福田の数学〜京都大学2025文系第2問〜恒等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$a,b$についての次の条件(*)を考える。

(*)ある実数係数の$2$次式$f(x)$と、

ある実数$c$に対して、

$x$についての恒等式

$\dfrac{1}{8}x^4+ax^3+bx^2=f(f(x))+c \cdots ①$

が成り立つ。

この条件(*)を満たす点$(a,b)$全体の集合を

座標平面上に図示せよ。

$2025$年京都大学文系過去問題
この動画を見る 

福田の数学〜九州大学2022年理系第2問〜商と余りの関係と極限

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$を3以上の自然数、$\alpha,\beta$を相異なる実数とするとき、以下の問いに答えよ。
(1)次を満たす実数A,B,Cと整式Q(x)が存在することを示せ。
$x^n=(x-\alpha)(x-\beta)^2Q(x)+A(x-\alpha)(x-\beta)+B(x-\alpha)+C$
(2)(1)のA,B,Cを$n,\alpha,\beta$を用いて表せ。
(3)(2)のAについて、nと$\alpha$を固定して、$\beta$を$\alpha$に近づけたときの極限
$\lim_{\beta \to \alpha}A$を求めよ。

2022九州大学理系過去問
この動画を見る 

福田の数学〜一橋大学2025文系第4問〜ベクトル方程式と領域と角を2等分するベクトル

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

原点を$O$とする座標空間内の

$2$点$A(0,3,-5),B(5,-2,10)$に対して

$\overrightarrow{OP}=s\left \{ (1-t)\overrightarrow{OA}+t\overrightarrow{OB} \right \},x\geqq 0,\dfrac{1}{5} \leqq t \leqq \dfrac{3}{5}$

で定まる点$P$が存在する範囲を$D$とする。

$D$に含まれる半径$10\sqrt2$の円のうち、

その中心と原点との距離が最小となるものを

$C$とする。

円$C$の中心の座標を求めよ。

$2025$年一橋大学文系過去問題
この動画を見る 

福田の数学〜京都大学2022年理系第2問〜連続しない自然数を選ぶ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
箱の中に1からnまでの番号の付いたn枚の札がある。ただし、$n \geqq 5$とし、
同じ番号の札はないとする。この箱から3枚の札を同時に取り出し、札の番号を
小さい順に$X,Y,Z$とする。このとき、$Y-X \geqq 2$かつ$Z-Y \geqq 2$となる確率を
求めよ。

2022京都大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第1問(2)〜ルートの2個ある無理方程式の解法

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)方程式

$\sqrt{x+510}+\sqrt{x+822}=52$

の解は$x=\boxed{オ}$である。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 
PAGE TOP