中2数学「高さが等しい三角形の面積比②」 - 質問解決D.B.(データベース)

中2数学「高さが等しい三角形の面積比②」

問題文全文(内容文):
~例題~

次の図の$\triangle ABC$で,点$D,E$は辺$AB$上の点で点$F,G$は辺$BC$上の点です.
線分$EF,DF,DG,AG$によって,$\triangle ABC$の面積が5等分されています.

(1)
$BG:GC$を最も簡単な整数の比で表しなさい.

(2)
$BC=15$cmのとき,$BF$の長さを求めなさい.
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
~例題~

次の図の$\triangle ABC$で,点$D,E$は辺$AB$上の点で点$F,G$は辺$BC$上の点です.
線分$EF,DF,DG,AG$によって,$\triangle ABC$の面積が5等分されています.

(1)
$BG:GC$を最も簡単な整数の比で表しなさい.

(2)
$BC=15$cmのとき,$BF$の長さを求めなさい.
投稿日:2023.04.27

<関連動画>

【得点源にするために…!】連立方程式:西大和学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #中2数学#連立方程式#高校入試過去問(数学)#西大和学園高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a $を定数とする.
$ x,y $についての連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
4y-3x=a \\
2x-3y=4
\end{array}
\right.
\end{eqnarray}$の解が$ x+y=a $を満たすとき,
定数$ a $の値を求めよ.

西大和学園高校過去問
この動画を見る 

【テスト対策・中2】1章-3

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしよう.

①$(-6)\times (-3)$

②$0.5 \times (-4)$

③$4 \div (-3)$

④$\left(-\dfrac{10}{3}\right)\div (-2)$

⑤$6+5 \times (-2)$

⑥$3\times (-2) - (-20) \div (-4)$

⑦$-\dfrac{3}{5} \times (-4) \div \dfrac{6}{5}$

⑧$\dfrac{6}{5} \div (-3)^2 \times \left(-\dfrac{10}{3}\right)$

⑨$0.8 \times \dfrac{3}{2} \div (-1.2)$

⑩$(-1.35) \div 0.5 \div (-0.3)$
この動画を見る 

【中2 数学】  中2-22  連立方程式の利用 (食塩水)

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
濃度(%)=$\displaystyle \frac{食塩}{食塩水} \times 100$
①190gの水に10gの食塩をとかしたとき、
食塩水の濃度は?
②7%の食塩水300gにとけている食塩は?
③ 8%と15%の食塩水をまぜて、 10%の食塩水を700g作ります。それぞれ?
この動画を見る 

確率:岐阜県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#岐阜県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 岐阜県の高校

袋の中に、「1~5までの数字」を
1つずつ書いた5枚のカードがある。
カードを1枚 取り出し
戻さずに 2枚目を取り出す。
1枚目:十の位の数字
2枚目:一の位の数字
つくった整数が偶数になる確率を求めなさい。
この動画を見る 

【高校受験対策】数学-文章題5

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・文章題5


右の記事は、ある中学校の保健委員会が発行した「保健だより」の一部である。
品数が「3品以上」と答えた生徒が、1、2年生あわせて149人であったとき、 朝食を「食べた」と答えた1年生、2年生はそれぞれ何人であったか、方程式をつくって求めなさい。なお途中の計算も書くこと。


A市の家庭における1か月あたりの水道料金は、 (水道料金)=(基本料金)+(水の使用量に応じた使用料金)となっています。
使用量が$30m^3$までは、$1m^3$あたりの使用料金が一定であり、使用量が$30m^3$を超えた分の$1m^3$があたりの使用料金は、 使用量が30$m^3$までの$1m^3$あたりの使用料金より80円高くなっています。
A市のある家庭における1ヶ月の水道料金は、使用量が$32m^3$のときは5310円、使用量が$28m^3$のときは4710円でした。 使用量が$30m^3$までの$1m^3$あたりの使用料金を求めなさい。
この動画を見る 
PAGE TOP