福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問後編〜空間図形の通過範囲の面積と体積 - 質問解決D.B.(データベース)

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問後編〜空間図形の通過範囲の面積と体積

問題文全文(内容文):
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、x> 0の領域において点 A ( 0 ,- 1 , 0 )から点 B ( 0 , 1,0 )まで移動する C 上の動点を P とする。
(1) 下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R の z 座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体Vについて、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、アで表される概形となり、その面積はイである。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1 :ウに内分する点である。点 P の位置に依らず、線分の長さについて$エ×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MH が通過する領域の概形はオであり、面積は$\displaystyle \frac{\sqrt{ カ }}{キ}\pi$である。
※ア、オの解答群は動画内参照
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線はクが描く曲線である。
クの解答群①点 Q ②点 R ③設間( a )で考えた点 H ④線分 QR とyz平面との交点 ⑤線分 QR を 1 :$\sqrt{ 2 }$に内分する点 ⑥線分 QR を$\sqrt{ 2 }$: 1 に内分する点 ⑦三角形 PQR の重心から線分 QR に引いた垂線と線分 QR との交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}$である。また△ PQR の面積は、線分 PQを直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体Vの体積は$\displaystyle \frac{シ}{ス}$である。
( 2 )$z \geqq 0$ の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線Lを考える。ただし、 Q , T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。点 P が(1,0,0)であるとき、放物線Lを表す式はy=0,$z=セソx^2+タ$(ただし$-1 \leqq x \leqq 1$)であり、この放物線と線分 PQ で囲まれる図形の面積は$\displaystyle \frac{チ}{ツ}$である。
点 P が点 A から点 B まで移動するとき、放物線 L と線分 PQ で囲まれる図形が通過してできる立体の体積は$\displaystyle \frac{テト}{ナ}$である。
点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}\pi$である。また△ PQR の面積は、線分 PQ を直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体体積はV の体積は$\displaystyle \frac{シ}{ス}$である。

2023杏林大学過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、x> 0の領域において点 A ( 0 ,- 1 , 0 )から点 B ( 0 , 1,0 )まで移動する C 上の動点を P とする。
(1) 下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R の z 座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体Vについて、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、アで表される概形となり、その面積はイである。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1 :ウに内分する点である。点 P の位置に依らず、線分の長さについて$エ×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MH が通過する領域の概形はオであり、面積は$\displaystyle \frac{\sqrt{ カ }}{キ}\pi$である。
※ア、オの解答群は動画内参照
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線はクが描く曲線である。
クの解答群①点 Q ②点 R ③設間( a )で考えた点 H ④線分 QR とyz平面との交点 ⑤線分 QR を 1 :$\sqrt{ 2 }$に内分する点 ⑥線分 QR を$\sqrt{ 2 }$: 1 に内分する点 ⑦三角形 PQR の重心から線分 QR に引いた垂線と線分 QR との交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}$である。また△ PQR の面積は、線分 PQを直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体Vの体積は$\displaystyle \frac{シ}{ス}$である。
( 2 )$z \geqq 0$ の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線Lを考える。ただし、 Q , T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。点 P が(1,0,0)であるとき、放物線Lを表す式はy=0,$z=セソx^2+タ$(ただし$-1 \leqq x \leqq 1$)であり、この放物線と線分 PQ で囲まれる図形の面積は$\displaystyle \frac{チ}{ツ}$である。
点 P が点 A から点 B まで移動するとき、放物線 L と線分 PQ で囲まれる図形が通過してできる立体の体積は$\displaystyle \frac{テト}{ナ}$である。
点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\displaystyle \frac{ケ}{コ}\pi$である。また△ PQR の面積は、線分 PQ を直径とする円の面積の$\displaystyle \frac{サ}{\pi}$倍である。よって、立体体積はV の体積は$\displaystyle \frac{シ}{ス}$である。

2023杏林大学過去問
投稿日:2023.12.28

<関連動画>

福田の1.5倍速演習〜合格する重要問題094〜青山学院大学2020年度理工学部第5問〜グラフと面積と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 関数$f(x)=\displaystyle\frac{1}{x^2+1}$について、以下の問いに答えよ。
(1)y=f(x)のグラフの概形を描け。凹凸も調べること。
(2)原点をOとし、y=f(x)のグラフの変曲点のうちx座標が正のものをPとする。
直線OPとy軸、y=f(x)のグラフとで囲まれた図形をDとする。Dの面積Sを求めよ。
(3)(2)の図形Dをy軸の周りに1回転してできる回転体の体積Vを求めよ。

2020青山学院大学理工学部過去問
この動画を見る 

【高校数学】毎日積分35日目【バウムクーヘン積分】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
今回は共通テスト直後ということで、バウムクーヘン積分について解説します.
この動画を見る 

【数Ⅲ】積分法:①逆関数を用いた積分! 曲線y=e^x,x=1,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$y=e^x,x=1$,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ
この動画を見る 

【積分】2023年京大数学!絶対に落としてはいけない問題です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
定積分 $\displaystyle \int_{1}^{4}\sqrt{x}\log(x^{2})dx$の値を求めよ。
この動画を見る 

福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その1(受験編)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 空間内の2点A(1,0,0),B(0,1,1)を結ぶ線分ABをz軸のまわりに
1回転してできる曲面と2平面z=0,z=1とで囲まれた立体の体積
を求めよ。
この動画を見る 
PAGE TOP