中2数学「折り返した図形の角」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「折り返した図形の角」【毎日配信】

問題文全文(内容文):
中2 ~折り返した図形の角~
例題 次の図は、それぞれ長方形や正三角形を折り返したものです。
∠xは何度ですか。
(1)~(4)
※図は動画内参照
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2 ~折り返した図形の角~
例題 次の図は、それぞれ長方形や正三角形を折り返したものです。
∠xは何度ですか。
(1)~(4)
※図は動画内参照
投稿日:2022.09.10

<関連動画>

みんなが間違う?コイントスの確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
コイントスの確率
コインを10回投げて表がぴったり5回出る確率を求めよ
この動画を見る 

【一粒で2度おいしい!】確率:大阪教育大学附属高等学校平野校舎~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#確率#高校入試過去問(数学)#大阪教育大学附属高等学校平野校舎
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 大阪教育大学附属高等学校平野校舎

さいころを2回振り
1回目の出目:a
2回目の出目:b

3つの直線 $y=ax, y=\displaystyle \frac{1}{a}x, y=b$ で囲まれる三角形を考える。
三角形ができない確率を求めなさい。

※図は動画内参照
この動画を見る 

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 

【中2 数学】  2-③⑤ 二元一次方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 二元一次方程式
次の問に答えよ
① $3x - 4y = 12$
② $4y -12 = 0$
③ $5x + 20 = 0$
※図は動画内参照
この動画を見る 

高等学校入学試験予想問題:近畿大学附属高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \dfrac{4x-y}{9}-\dfrac{5x-4y}{12}$を計算せよ.
(2)$ xy-3y-3x+9 $を因数分解せよ.
(3)
$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=1 \\
2ax+by=16
\end{array}
\right.
\end{eqnarray}$

$ \begin{eqnarray}
\left\{
\begin{array}{l}
ax+2y=8 \\
-3x+2y=3
\end{array}
\right.
\end{eqnarray}$
が同じ解をもつとき,$ a,b $の値を求めよ.

$ \boxed{2}$

図のように,関数$ y=x^2 $のグラフと直線$ y=-2x+8 $との交点を$ A,B,$直線$AB $の中点を$M$とするとき,次の問いに答えよ.
ただし,点$A$のx座標は負とする.
(1)点$A$の座標を求めよ.
(2)直線$OM$の式を求めよ.
(3)$ \triangle OCM $をx軸のまわりに1回転させてできる立体の体積を求めよ.

$ \boxed{3}$

図のように,点$O$を中心とし,線分$AB$を直径とする半径6の円があり,点$C$は線分$OB$の中点である,2点$D,E$は直径$AB$に対して同じ側の円周上にあり,$AB$と$CD$は直角,$AB$と$OE$は直角となっている.
また,線分$AD$と線分$OE$の交点を点$F$とする.
このとき,次の問いに答えよ.
(1)$CD$の長さを求めよ.
(2)$ \triangle AEF$の面積を求めよ.
(3)$ AF:AD$の比を求めよ.また,$\triangle DEF $の面積を求めよ.
この動画を見る 
PAGE TOP