福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積 - 質問解決D.B.(データベース)

福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 関数 f(x) = -xe^x を考える。曲線C: y = f(x)の点(a, f(a)) における接線をl_aと\\
し、接線l_aとy軸の交点を (0, g(a)) とおく。以下の問いに答えよ。\hspace{60pt}\\
(1) 接線l_aの方程式とg (a)を求めよ。\hspace{170pt}\\
以下、aの関数g (a) が極大値をとるときのaの値をbとおく。\hspace{79pt}\\
(2) bを求め、点(b, f(b)) は曲線Cの変曲点であることを示せ。\hspace{76pt}\\
(3) 曲線Cの点 (b, f(b)) における接線l_bと x軸の交点のx座標cを求めよ。さらに、\hspace{10pt}\\
c\leqq x\leqq 0の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。\hspace{50pt}\\
(4)曲線C、接線l_bおよびy軸で囲まれた部分の面積Sを求めよ。 \hspace{73pt}
\end{eqnarray}

2022中央大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 関数 f(x) = -xe^x を考える。曲線C: y = f(x)の点(a, f(a)) における接線をl_aと\\
し、接線l_aとy軸の交点を (0, g(a)) とおく。以下の問いに答えよ。\hspace{60pt}\\
(1) 接線l_aの方程式とg (a)を求めよ。\hspace{170pt}\\
以下、aの関数g (a) が極大値をとるときのaの値をbとおく。\hspace{79pt}\\
(2) bを求め、点(b, f(b)) は曲線Cの変曲点であることを示せ。\hspace{76pt}\\
(3) 曲線Cの点 (b, f(b)) における接線l_bと x軸の交点のx座標cを求めよ。さらに、\hspace{10pt}\\
c\leqq x\leqq 0の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。\hspace{50pt}\\
(4)曲線C、接線l_bおよびy軸で囲まれた部分の面積Sを求めよ。 \hspace{73pt}
\end{eqnarray}

2022中央大学理工学部過去問
投稿日:2022.10.23

<関連動画>

福田の数学〜早稲田大学2022年社会科学部第2問〜平面幾何と3次関数の増減

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}} AB=AC=1,\ BC=aの二等辺三角形ABCの内接円をI、外接円をOとする。\\
ただし、0 \lt a \lt \sqrt2 である。また、三角形ABCと円Iの3つの接点を頂点とする\\
三角形をT、3点A,\ B,\ Cで円Oに外接する三角形をUとする。次の問いに答えよ。\\
(1)三角形Tの、BCに平行な辺の長さtをaで表せ。\\
(2)三角形Uの、BCに平行な辺の長さuをaで表せ。\\
(3)\frac{t}{u}=pとする。pが最大となるaの値と、そのときのpの値を求めよ。\\
\end{eqnarray}

2022早稲田大学社会科学部過去問
この動画を見る 

名古屋市立 4次関数と接線

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+2x^3-x^2$
点$A(a,f(a))$における接線と$f(x)$が$A$以外の2点$P,Q$で交わる

(1)
$a$の範囲を求めよ

(2)
点$A$が線分$PQ$上にあるような$a$の範囲を求めよ

出典:1995年名古屋市立大学 過去問
この動画を見る 

解けるように作られた指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)^{x-y}=2 \\
2^{y-x},(x+y)=1
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

これから数Ⅲを学ぶ人に贈る「ネイピア数eってなんだよ?」

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):

$e=\displaystyle \lim_{ x \to \infty }(1+\displaystyle \frac{1}{n})^n$

$=\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$



$y=e^x$ $y^1=e^x$



動画内の図をみて求めよ



$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る 

指数の計算!!

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$7^8 = a$ , $8^7 = b$
$56^{56}$をa,bで表せ。
この動画を見る 
PAGE TOP