福田の数学〜早稲田大学2022年社会科学部第2問〜平面幾何と3次関数の増減 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年社会科学部第2問〜平面幾何と3次関数の増減

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}} AB=AC=1,\ BC=aの二等辺三角形ABCの内接円をI、外接円をOとする。\\
ただし、0 \lt a \lt \sqrt2 である。また、三角形ABCと円Iの3つの接点を頂点とする\\
三角形をT、3点A,\ B,\ Cで円Oに外接する三角形をUとする。次の問いに答えよ。\\
(1)三角形Tの、BCに平行な辺の長さtをaで表せ。\\
(2)三角形Uの、BCに平行な辺の長さuをaで表せ。\\
(3)\frac{t}{u}=pとする。pが最大となるaの値と、そのときのpの値を求めよ。\\
\end{eqnarray}
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}} AB=AC=1,\ BC=aの二等辺三角形ABCの内接円をI、外接円をOとする。\\
ただし、0 \lt a \lt \sqrt2 である。また、三角形ABCと円Iの3つの接点を頂点とする\\
三角形をT、3点A,\ B,\ Cで円Oに外接する三角形をUとする。次の問いに答えよ。\\
(1)三角形Tの、BCに平行な辺の長さtをaで表せ。\\
(2)三角形Uの、BCに平行な辺の長さuをaで表せ。\\
(3)\frac{t}{u}=pとする。pが最大となるaの値と、そのときのpの値を求めよ。\\
\end{eqnarray}
投稿日:2022.08.22

<関連動画>

関西大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ

立教大学過去問題
$2^{18}-1$を素因数分解
この動画を見る 

m,n自然数 m^n=n^m すべて求めよ

アイキャッチ画像
単元: #数A#整数の性質#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,n自然数(m>n)
$m^n=n^m$を満たすm,nをすべて求めよ。
この動画を見る 

場合の数 4STEP数A 79 重複組合せ2【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
候補者が3人で、投票者が8人いる無記名投票で、1人1票を投票するときの表の分かれ方の総数を求めよ。ただし、候補者は投票できないとする。
この動画を見る 

整数の性質 4STEP数A 273,274,275 素因数分解、素数【ゆう☆たろうがていねいに解説】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質
指導講師: 理数個別チャンネル
問題文全文(内容文):
273:nは自然数とする。2310/nが素数となるnは何個あるか。
274:nは自然数とする。n^2-14n+40が素数となるようなnをすべて求めよ。
275:次の問いに答えよ。
(1)(ア)5以上の素数を小さい方から順に10個あげよ。
(イ)(ア)であげた素数から予想できることについて,下の文章の□に当てはまる自然数のうち,最大のものを求めよ。ただし,□には同じ自然数が入るものとする。
5以上の素数は,□の倍数から1引いた数か,□の倍数に1足した数である。
(2)(1)(イ)の予想が正しいことを証明せよ。
この動画を見る 

福田の数学〜神戸大学2022年文系第3問〜指数方程式と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを実数とし、1 \lt a \lt bとする。以下の問いに答えよ。\hspace{130pt}\\
\\
(1)x,y,zを0でない実数とする。a^x=b^y=(ab)^zならば\frac{1}{x}+\frac{1}{y}=\frac{1}{z}であることを示せ。\\
\\
(2)m,nをm \gt nを満たす自然数とし、\frac{1}{m}+\frac{1}{n}=\frac{1}{5}とする。m,nの値を求めよ。\\
\\
(3)m,nを自然数とし、a^m=b^n=(ab)^5とする。bの値をaを用いて表せ。
\end{eqnarray}
この動画を見る 
PAGE TOP