福田の数学〜明治大学2022年全学部統一入試理系第3問〜2次曲線の極方程式と置換積分 - 質問解決D.B.(データベース)

福田の数学〜明治大学2022年全学部統一入試理系第3問〜2次曲線の極方程式と置換積分

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}} \ a,\ hを正の実数とする。座標平面において、原点Oからの距離が、\hspace{110pt}\\
直線x=hからの距離のa倍であるような点Pの軌跡を考える。点Pの座標を(x,\ y)とする\\
と、x,\ y\ は次の方程式を満たす。\\
(1-\boxed{\ \ ア\ \ })\ x^2+2\ \boxed{\ \ イ\ \ }\ x+y^2=\boxed{\ \ ウ\ \ }\ \ \ \ \ ...(1) \\
\\
\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ },\ \boxed{\ \ ウ\ \ }\ の解答群\\
⓪a^2\ \ \ ①h^2\ \ \ ②a^3\ \ \ ③a^2h\ \ \ ④ah^2\ \ \ \\
⑤h^3\ \ \ ⑥a^4\ \ \ ⑦a^2h^2\ \ \ ⑧ah^3\ \ \ ⑨h^4\ \ \ \\
\\
次に、座標平面の原点Oを極、x軸の正の部分を始線とする極座標を考える。\\
点Pの極座標を(r\ θ)とする。r \leqq hを満たすとき、点Pの直交座標(x,\ y)をa,\ h,\ θ\\
を用いて表すと\\
(x,\ y)=(\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ \cos θ,\ \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ \sin θ)\ \ \ \ \ ...(2) \\
\\
\boxed{\ \ エ\ \ },\ \boxed{\ \ オ\ \ }\ の解答群\\
⓪h\ \ \ ①ah\ \ \ ②h^2\ \ \ ③ah^2\ \ \ ④1+a\cos θ\ \ \ \\
⑤1+a\sin θ\ \ \ ⑥a\cos θ-1\ \ \ ⑦a\sin θ-1\ \ \ ⑧1-a\cos θ\ \ \ ⑨1-a\sin θ\ \ \ \\
\\
(1)から、a=\boxed{\ \ カ\ \ }のとき、点Pの軌跡は放物線\ x=\boxed{\ \ キ\ \ }\ y^2+\boxed{\ \ ク\ \ }となる。\\
この放物線とy軸で囲まれた図形の面積Sは\\
S=2\int_0^{\boxed{\ \ ケ\ \ }}xdy=2\int_0^{\boxed{\ \ ケ\ \ }}(\boxed{\ \ キ\ \ }\ y^2+\boxed{\ \ ク\ \ })dy=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ h^2\\
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。\\
\int_0^{\frac{\pi}{2}}\frac{\cos θ}{(1+\cos θ)^2}dθ=\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}\\
\\
\boxed{\ \ キ\ \ },\ \boxed{\ \ ク\ \ },\ \boxed{\ \ ケ\ \ }\ の解答群\\
⓪h\ \ \ ①2h\ \ \ ②\frac{h}{2}\ \ \ ③-\frac{h}{2}\ \ \ ④\frac{1}{h}\ \ \ \\
⑤-\frac{1}{h}\ \ \ ⑥\frac{1}{2h}\ \ \ ⑦-\frac{1}{2h}\ \ \ ⑧h^2\ \ \ ⑨-h^2\ \ \
\end{eqnarray}
単元: #大学入試過去問(数学)#平面上の曲線#積分とその応用#2次曲線#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#明治大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}} \ a,\ hを正の実数とする。座標平面において、原点Oからの距離が、\hspace{110pt}\\
直線x=hからの距離のa倍であるような点Pの軌跡を考える。点Pの座標を(x,\ y)とする\\
と、x,\ y\ は次の方程式を満たす。\\
(1-\boxed{\ \ ア\ \ })\ x^2+2\ \boxed{\ \ イ\ \ }\ x+y^2=\boxed{\ \ ウ\ \ }\ \ \ \ \ ...(1) \\
\\
\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ },\ \boxed{\ \ ウ\ \ }\ の解答群\\
⓪a^2\ \ \ ①h^2\ \ \ ②a^3\ \ \ ③a^2h\ \ \ ④ah^2\ \ \ \\
⑤h^3\ \ \ ⑥a^4\ \ \ ⑦a^2h^2\ \ \ ⑧ah^3\ \ \ ⑨h^4\ \ \ \\
\\
次に、座標平面の原点Oを極、x軸の正の部分を始線とする極座標を考える。\\
点Pの極座標を(r\ θ)とする。r \leqq hを満たすとき、点Pの直交座標(x,\ y)をa,\ h,\ θ\\
を用いて表すと\\
(x,\ y)=(\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ \cos θ,\ \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ \sin θ)\ \ \ \ \ ...(2) \\
\\
\boxed{\ \ エ\ \ },\ \boxed{\ \ オ\ \ }\ の解答群\\
⓪h\ \ \ ①ah\ \ \ ②h^2\ \ \ ③ah^2\ \ \ ④1+a\cos θ\ \ \ \\
⑤1+a\sin θ\ \ \ ⑥a\cos θ-1\ \ \ ⑦a\sin θ-1\ \ \ ⑧1-a\cos θ\ \ \ ⑨1-a\sin θ\ \ \ \\
\\
(1)から、a=\boxed{\ \ カ\ \ }のとき、点Pの軌跡は放物線\ x=\boxed{\ \ キ\ \ }\ y^2+\boxed{\ \ ク\ \ }となる。\\
この放物線とy軸で囲まれた図形の面積Sは\\
S=2\int_0^{\boxed{\ \ ケ\ \ }}xdy=2\int_0^{\boxed{\ \ ケ\ \ }}(\boxed{\ \ キ\ \ }\ y^2+\boxed{\ \ ク\ \ })dy=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ h^2\\
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。\\
\int_0^{\frac{\pi}{2}}\frac{\cos θ}{(1+\cos θ)^2}dθ=\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}\\
\\
\boxed{\ \ キ\ \ },\ \boxed{\ \ ク\ \ },\ \boxed{\ \ ケ\ \ }\ の解答群\\
⓪h\ \ \ ①2h\ \ \ ②\frac{h}{2}\ \ \ ③-\frac{h}{2}\ \ \ ④\frac{1}{h}\ \ \ \\
⑤-\frac{1}{h}\ \ \ ⑥\frac{1}{2h}\ \ \ ⑦-\frac{1}{2h}\ \ \ ⑧h^2\ \ \ ⑨-h^2\ \ \
\end{eqnarray}
投稿日:2022.09.03

<関連動画>

【数Ⅲ】式と曲線:二次曲線の極方程式

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#4S数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極方程式はどのような曲線を表すか。直交座標の方程式に直して答えよ。
(1)r=2/(√2+cosθ)
(2)r=9/(1+2cosθ)
(3)r=3(√1+cosθ)
(出典 数研出版4STEP数学Ⅲ)
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} a,bを定数とし、関数f(x)=x^2+ax+b とする。方程式f(x)=0の2つの解\alpha,\beta\\
が次式で与えられている。\\
\alpha=\frac{\sin\theta}{1+\cos\theta}, \beta=\frac{\sin\theta}{1-\cos\theta}\\
ここで\thetaは、0 \lt \theta \lt \piの定数である。次の問いに答えよ。\\
(1)a,bを\thetaを用いて表せ。\\
(2)\thetaが0 \lt \theta \piで変化するとき、放物線y=f(x)の頂点の軌跡を求めよ。\\
(3)\int_0^{2\sin\theta}f(x)dx=0 となる\thetaの値を全て求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第4問〜極方程式と曲線で囲まれた面積

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#媒介変数表示と極座標#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 座標平面の原点Oを極、x軸の正の部分を始線とする極座標(r,\ \theta)を考える。\\
k \gt 0として、極方程式\\
r(\sqrt{\cos\theta}+\sqrt{\sin\theta})^2=k  (0 \leqq \theta \leqq \frac{\pi}{2})\\
で表される曲線をC(k)とする。曲線C(k)上の点を直交座標(x,\ y)で表せばxの\\
とりうる値の範囲は、\boxed{\ \ ア\ \ } \leqq x \leqq \boxed{\ \ イ\ \ }\ である。\\
曲線C(k)とx軸、y軸で囲まれた図形の面積をS(k)とおけば、S(k)=\boxed{\ \ ウ\ \ }\ \\
でなる。直交座標が(\frac{k}{4},\ \frac{k}{4})である曲線\ C(k)上の点Aにおける曲線C(k)の接線l\\
の方程式は、y=\boxed{\ \ エ\ \ }となる。曲線\ C(k)と直線l、およびx軸で囲まれた\\
図形の面積をT(k)とおけば、S(k)=\boxed{\ \ オ\ \ }\ T(k)が成り立つ。0 \lt m \lt nを\\
満たす実数m,nに対して、S(n)-S(m)がT(n)と等しくなるのは、\\
\\
\frac{m^2}{n^2}=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ \ \ }}\ のときである。\\
\\
\boxed{\ \ イ\ \ }\ 、\boxed{\ \ ウ\ \ }の解答群\\
⓪\sqrt k  ①k  ②k^2  ③\frac{\sqrt 2}{2}  ④\frac{\sqrt 2}{3}  \\
⑤\frac{k}{2}  ⑥\frac{k}{3}  ⑦\frac{k^2}{4}  ⑧\frac{k^2}{5}  ⑨\frac{k^2}{6}  \\
\\
\boxed{\ \ エ\ \ }\ の解答群\\
⓪x+\frac{k}{2}  ①x+\frac{k}{4}  ②-x+\frac{k}{2}  ③-x+\frac{k}{4}  ④2x-\frac{k}{2}  \\
⑤2x-\frac{k}{4}  ⑥2x-\frac{3k}{4}  ⑦-2x+\frac{k}{2}  ⑧-2x+\frac{k}{4}  ⑨-2x+\frac{3k}{4}  
\end{eqnarray}
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第4問〜媒介変数で表された極方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え\hspace{10pt}\\
る。平面上を運動する点Pの極座標(r,\ θ)が、時刻t \geqq 0の関数として、\hspace{39pt}\\
r=1+t,\ \ \ θ=\log(1+t)\hspace{100pt}\\
で与えられるとする。時刻t=0にPが出発してから初めてy軸上に到着するまで\\
にPが描く軌跡をCとする。\hspace{191pt}\\
(1)\ t \gt 0において、Pが初めてy軸上に到着するときのtの値を求めよ。\hspace{30pt}\\
(2)C上の点のx座標の最大値を求めよ。\hspace{147pt}\\
(3)Cの長さを求めよ。\hspace{210pt}\\
(4)Cを座標平面上に図示せよ。\hspace{177pt}\\
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。\hspace{109pt}\\
\end{eqnarray}
この動画を見る 

【数Ⅲ】式と曲線:tractrixに関する問題

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tractrixと呼ばれる媒介変数で表される曲線が持つ性質に関する証明です。あまり有名ではないものの、高校数学で十分証明が可能なものになります。入試にも出題される可能性が高いかと思われますので、ぜひご覧ください。
この動画を見る 
PAGE TOP