福田の数学〜早稲田大学2022年商学部第1問(1)〜漸化式の解法 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年商学部第1問(1)〜漸化式の解法

問題文全文(内容文):
1(1)数列{an}が次の条件を満たしている。
(i)a1=a2=4
(ii)an+2=anlog2an+1(n=1,2,3,)
このとき、log2(log2a10)=    である。

2022早稲田大学商学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1(1)数列{an}が次の条件を満たしている。
(i)a1=a2=4
(ii)an+2=anlog2an+1(n=1,2,3,)
このとき、log2(log2a10)=    である。

2022早稲田大学商学部過去問
投稿日:2022.08.15

<関連動画>

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1(5)3進法で表された3n桁の整数
210210210(3)3n
がある(ただし、nは自然数とする)。この数は、1knを満たす全て
の自然数kに対して、最小の位から数えて3k番目の位の数が23k1番目の位
の数が13k2番目の位の数が0である。この数を10進法で表した数をan
とおく。
(i)a2=    である。

2021慶應義塾大学薬学部過去問
(ii)anをnの式で表すと、    である。
この動画を見る 

一橋大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'98一橋大学過去問題
すべての自然数nに対して5n+an+bが16の倍数となるような
16以下の自然数a,bを求めよ。
この動画を見る 

無限等比級数

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
12+14+18+116+132+=?
この動画を見る 

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率をpnとすると、p2=, p3=
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率をpnとすると、次式が成り立つ。
p2=オカキク, p3=ケコサシ
n回目の試行開始時点で袋に人っている玉の個数MnMn=n+であり、この時点で袋に入っていると期待される赤玉の個数RnRn=Mn×Pnと表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数はRn+1=Rn+(1Pn)×となる。したがって、
Pn+1=n+n+×Pn+1n+
が成り立つ。このことから、(n+3)×(n+)×(Pn)がnに依らず一定となる事が分かり、limnPn=と求められる。

2023杏林大学医過去問
この動画を見る 

和歌山県立医大 奈良女子大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)#数B#和歌山県立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
n3(n21)が8の倍数であることを示せ(n)整数

k=1n1k(k+1)(k+2)(k+3)


出典:和歌山県立医科大学/奈良女子大学 過去問
この動画を見る 
PAGE TOP preload imagepreload image