福田の数学〜早稲田大学2022年教育学部第2問〜サイコロの目の積の約数の個数と確率 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年教育学部第2問〜サイコロの目の積の約数の個数と確率

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ サイコロをn回投げて出た目の積をSとする。Sの正の約数の個数がk個となる\\
確率をP_kとする。次の問いに答えよ。\hspace{160pt}\\
(1)P_3をnの式で表せ。\hspace{210pt}\\
(1)P_4をnの式で表せ。\hspace{210pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ サイコロをn回投げて出た目の積をSとする。Sの正の約数の個数がk個となる\\
確率をP_kとする。次の問いに答えよ。\hspace{160pt}\\
(1)P_3をnの式で表せ。\hspace{210pt}\\
(1)P_4をnの式で表せ。\hspace{210pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
投稿日:2022.08.12

<関連動画>

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(3)〜さいころの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 3個のさいころを1回投げるとき、出た目の最大値が3となる確率は\\
\ \boxed{\ \ エ\ \ }\ であり、また、出た目の積が8となる確率は\ \boxed{\ \ オ\ \ }\ である。
\end{eqnarray}

2021立教大学経済学部過去問
この動画を見る 

宝くじと隕石が当たる確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
宝くじ当たってから隕石に当たる確率は?
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第1問(2)〜同じものを含む順列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)k a n g o g a k u の9文字すべてを並べてできる文字列の種類は全部で$\boxed{\ \ ウ\ \ }$通りであり、このうち子音と母音が交互に並ぶものは$\boxed{\ \ エ\ \ }$通りである。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

条件つき確率とは? 早稲田大学

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
5回に1回の割合で帽子を忘れる少女が3軒の家を訪れ帰宅後帽子を忘れたと気付いたとき2軒目に帽子を忘れる確率は?

早稲田大学
この動画を見る 
PAGE TOP