福田の数学〜早稲田大学2022年理工学部第5問〜対数関数の極限と変曲点とグラフの接線 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年理工学部第5問〜対数関数の極限と変曲点とグラフの接線

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ a \gt 0を定数とし、f(x)=x^a\log xとする。以下の問いに答えよ。\hspace{40pt}\\
(1)\lim_{x \to +0}f(x)を求めよ。必要ならば\lim_{s \to \infty}se^{-s}=0が成り立つことは\\
証明なしに用いてよい。\\
(2)曲線y=f(x)の変曲点がx軸上に存在するときのaの値を求めよ。\\
さらにそのときy=f(x)のグラフの概形を描け。\\
(3)t \gt 0に対して、曲線y=f(x)上の点(t,f(t))における接線をlとする。\\
lがy軸の負の部分と交わるための(a,t)の条件を求め、その条件の表す領域を\\
a-t平面上に図示せよ。
\end{eqnarray}

2022早稲田大学人間科学部過去問
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ a \gt 0を定数とし、f(x)=x^a\log xとする。以下の問いに答えよ。\hspace{40pt}\\
(1)\lim_{x \to +0}f(x)を求めよ。必要ならば\lim_{s \to \infty}se^{-s}=0が成り立つことは\\
証明なしに用いてよい。\\
(2)曲線y=f(x)の変曲点がx軸上に存在するときのaの値を求めよ。\\
さらにそのときy=f(x)のグラフの概形を描け。\\
(3)t \gt 0に対して、曲線y=f(x)上の点(t,f(t))における接線をlとする。\\
lがy軸の負の部分と交わるための(a,t)の条件を求め、その条件の表す領域を\\
a-t平面上に図示せよ。
\end{eqnarray}

2022早稲田大学人間科学部過去問
投稿日:2022.07.29

<関連動画>

福田のわかった数学〜高校3年生理系045〜極限(45)関数の連続性(2)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(2)\\
f(x)=[x^2](x+1)\\
はx=0で連続かまた、x=1で連続か、調べよ。
\end{eqnarray}
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第5問〜空間内の直線上の点列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 座標空間内において、ベクトル\\
\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)\\
が定める直線\\
l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }\\
を考える。点A_1を原点(0,0,0)とし、点A_1から直線l'に下ろした垂線A_1B_1と\\
おく。次に、点B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })から直線lに下ろした垂線をB_1A_2とおく。\\
同様に、点A_k(s_k\overrightarrow{ a })から直線l'に下ろした垂線をA_kB_k、点B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })から直線l\\
に下ろした垂線をB_kA_{k+1}とする手順を繰り返して、点A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })\\
(nは正の整数)を定める。\\
(1)s_nを用いてs_{n+1}を表せ。\\
(2)極限値S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_nを求めよ。\\
(3)(2)で求めたS,Tに対して、点A,BをそれぞれA(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })とおくと、\\
直線ABは2直線l,l'の両方と直交することを示せ。
\end{eqnarray}

2022東北大学理系過去問
この動画を見る 

【高校数学】分数関数と一次関数の不等式をグラフを使わない裏ワザ!

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
$\displaystyle\frac{3x-4}{2x-3} < x$
この動画を見る 

浜松医大 確率 サイコロ4個・n個 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
浜松医科大学過去問題
(1)4個のサイコロを投げて1,1,2,2のように同じ目がちょうど2個ずつでる確率
(2)n=4,5,6・・・としてn個のサイコロを投げて、少なくとも(n-2)個のサイコロに同じ目がそろって出る確率$P_n$
 また$\displaystyle\lim_{n \to \infty}\frac{P_n+1}{P_n}$
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(4)〜合成関数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (4)数列\left\{a_n\right\},\left\{b_n\right\}(ただしa_1≠0かつa_1≠1)に対して1次関数\\
f_n(x)=a_nx+b_n (n=1,2,\ldots)\\
を定める。また、\alpha=a_1, \beta=b_1とおく。すべての自然数nに対して\\
(f_n◦f_1)(x)=f_{n+1}(x)\\
が成り立つとき、数列\left\{a_n\right\},\left\{b_n\right\}の一般項を\alphaと\betaの式で表すと\\
a_n=\boxed{\ \ ク\ \ }, b_n=\boxed{\ \ ケ\ \ }\\
となる。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP