福田の数学〜慶應義塾大学2022年看護医療学部第4問〜空間図形とベクトル - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年看護医療学部第4問〜空間図形とベクトル

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ aを1以上の実数とし、AB=BC=CA=1およびAD=BD=CD=a\\
を満たす四面体ABCDを考える。このとき、\cos\angle BAD=\boxed{\ \ ア\ \ }である。\\
また、ADの中点をEとしたとき、\overrightarrow{ EB }を\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }を用いて表すと\\
\overrightarrow{ EB }=\boxed{\ \ イ\ \ }\ となるので、|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }\ で、\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }\\
である。よって、a=1のとき、\cos\angle BEC=\boxed{\ \ オ\ \ }であり、\\
\angle BEC=60°となるのはa=\boxed{\ \ カ\ \ }\ のときである。
\end{eqnarray}

2022慶応義塾大学看護医療学科過去問
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ aを1以上の実数とし、AB=BC=CA=1およびAD=BD=CD=a\\
を満たす四面体ABCDを考える。このとき、\cos\angle BAD=\boxed{\ \ ア\ \ }である。\\
また、ADの中点をEとしたとき、\overrightarrow{ EB }を\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }を用いて表すと\\
\overrightarrow{ EB }=\boxed{\ \ イ\ \ }\ となるので、|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }\ で、\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }\\
である。よって、a=1のとき、\cos\angle BEC=\boxed{\ \ オ\ \ }であり、\\
\angle BEC=60°となるのはa=\boxed{\ \ カ\ \ }\ のときである。
\end{eqnarray}

2022慶応義塾大学看護医療学科過去問
投稿日:2022.07.23

<関連動画>

【数B】空間ベクトル:東京理科大 座標空間の図形問題

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
この動画を見る 

これ知ってる?

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
全方向美少女が全方向でない事に関して解説します。
この動画を見る 

【数C】ベクトルの基本⑲空間ベクトルにおける三角形の面積

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(-2,1,3),B=(-3,1,4),C=(-3,3,5)が与えられたとき、三角形ABCの面積を求めよ
この動画を見る 

【数C】空間ベクトル:軸/平面に関して対称な点の考え方

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直方体OABC-DEFGについて、次の座標を求めよう。
(1)点Fからxy平面に下した垂線の足B
(2)点Fとyz平面に関して対称な点P
(3)点Fとy軸に関して対応な点Q
この動画を見る 

福田の数学〜九州大学2022年文系第2問〜点と平面の距離と対称点

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 座標空間内の4点\\
O(0,0,0),A(1,1,0),B(2,1,2),P(4,0,-1)\\
を考える。3点O,A,Bを通る平面を\alphaとし、\overrightarrow{ a }=\overrightarrow{ OA },
\overrightarrow{ b }=\overrightarrow{ OB }とおく。\\
以下の問いに答えよ。\\
(1)ベクトル\overrightarrow{ a },\ \overrightarrow{ b }の両方に垂直であり、x成分が正であるような、大きさが1\\
のベクトル\overrightarrow{ n }を求めよ。\\
(2)点Pから平面\alphaに垂線を下ろし、その交点をQとおく。\\
線分PQの長さを求めよ。\\
(3)平面\alphaに関して点Pと対称な点P'の座標を求めよ。
\end{eqnarray}

2022九州大学文系過去問
この動画を見る 
PAGE TOP