福田の数学〜慶應義塾大学2022年看護医療学部第4問〜空間図形とベクトル - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年看護医療学部第4問〜空間図形とベクトル

問題文全文(内容文):
${\large\boxed{4}}$aを1以上の実数とし、$AB=BC=CA=1$および$AD=BD=CD=a$
を満たす四面体ABCDを考える。このとき、$\cos\angle BAD=\boxed{\ \ ア\ \ }$である。
また、ADの中点をEとしたとき、$\overrightarrow{ EB }$を$\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }$を用いて表すと
$\overrightarrow{ EB }=\boxed{\ \ イ\ \ }$となるので、$|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }$で、
$\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }$
である。よって、$a=1$のとき、$\cos\angle BEC=\boxed{\ \ オ\ \ }$であり、
$\angle BEC=60°$となるのは$a=\boxed{\ \ カ\ \ }$のときである。

2022慶応義塾大学看護医療学科過去問
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$aを1以上の実数とし、$AB=BC=CA=1$および$AD=BD=CD=a$
を満たす四面体ABCDを考える。このとき、$\cos\angle BAD=\boxed{\ \ ア\ \ }$である。
また、ADの中点をEとしたとき、$\overrightarrow{ EB }$を$\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }$を用いて表すと
$\overrightarrow{ EB }=\boxed{\ \ イ\ \ }$となるので、$|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }$で、
$\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }$
である。よって、$a=1$のとき、$\cos\angle BEC=\boxed{\ \ オ\ \ }$であり、
$\angle BEC=60°$となるのは$a=\boxed{\ \ カ\ \ }$のときである。

2022慶応義塾大学看護医療学科過去問
投稿日:2022.07.23

<関連動画>

【数B】空間ベクトル:ベクトルの最小値を求める!!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)原点Oと2点A(-1, 2, -3)、B(-3, 2, 1)に対して、p=(1-t)OA+tOBとする。$\vert p\vert$の最小値とそのときの実数tの値を求めよ。
(2)定点A(-1, -2, 1)、B(5, -1, 3)とzx平面上の動点Pに対し、AP+PBの最小値を求めよ。
この動画を見る 

【数C】【空間ベクトル】平行四辺形の3つの頂点がA(3,0,-4)、B(-2,5,-1)、C(4,3,2)のとき、第4の頂点の座標を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形の3つの頂点がA(3,0,-4)、B(-2,5,-1)、C(4,3,2)のとき、第4の頂点の座標を求めよ。
この動画を見る 

数検準1級2次過去問【2020年12月】6番:ベクトル

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#空間ベクトル#空間ベクトル#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
6⃣
▢ABCDが正方形の四角錐O-ABCDがある。
OAを1:1に内分する点をP
OBを2:1に内分する点をQ
OCを3:1に内分する点をR
3点P,Q,Rを通る平面とODの交点をSとする。
$\vec{ OS }$を$\vec{ OA }$,$\vec{ OB }$,$\vec{ OC }$で表せ
この動画を見る 

福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間ベクトルに対し、次の関係を定める。
$\overrightarrow{ a }=(a_1,a_2,a_3)$と$\overrightarrow{ b }=(b_1,b_2,b_3)$が、
次の$(\textrm{i}),(\textrm{ii}),(\textrm{iii})$のいずれかを
満たしているとき$\overrightarrow{ a }$は$\overrightarrow{ b }$より前であるといい、
$\overrightarrow{ a }≺ \overrightarrow{ b }$と表す。
$(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1$かつ
$a_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1$かつ$a_2=b_2$かつ$a_3 \lt b_3$

空間ベクトルの集合$P=\left{{(x,y,z) | x,y,zは0以上7以下の整数\right}$の要素を
前から順に$\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }$とする。
ここで、mはPに含まれる要素の総数を表す。
つまり、$P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}$であり、
$\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)$
を満たしている。次の各設問に答えよ。
(1)$\overrightarrow{ p_{67} }$を求めよ。
(2)集合$\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}$の要素のうちで最大のものを求めよ。

2022早稲田大学商学部過去問
この動画を見る 

【数C】空間ベクトル:軸/平面に関して対称な点の考え方

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直方体OABC-DEFGについて、次の座標を求めよう。
(1)点Fからxy平面に下した垂線の足B
(2)点Fとyz平面に関して対称な点P
(3)点Fとy軸に関して対応な点Q
この動画を見る 
PAGE TOP