問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)関数f(\theta)=\cos2\theta+2\cos\thetaが0 \leqq \theta \leqq \pi の範囲で最小値をとるのは\theta=\boxed{\ \ ア\ \ }\\
のときであり、最大値を取るのは\theta=\boxed{\ \ イ\ \ }\ のときである。\hspace{70pt}
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
\begin{eqnarray}
{\large\boxed{1}}\ (3)関数f(\theta)=\cos2\theta+2\cos\thetaが0 \leqq \theta \leqq \pi の範囲で最小値をとるのは\theta=\boxed{\ \ ア\ \ }\\
のときであり、最大値を取るのは\theta=\boxed{\ \ イ\ \ }\ のときである。\hspace{70pt}
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)関数f(\theta)=\cos2\theta+2\cos\thetaが0 \leqq \theta \leqq \pi の範囲で最小値をとるのは\theta=\boxed{\ \ ア\ \ }\\
のときであり、最大値を取るのは\theta=\boxed{\ \ イ\ \ }\ のときである。\hspace{70pt}
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
\begin{eqnarray}
{\large\boxed{1}}\ (3)関数f(\theta)=\cos2\theta+2\cos\thetaが0 \leqq \theta \leqq \pi の範囲で最小値をとるのは\theta=\boxed{\ \ ア\ \ }\\
のときであり、最大値を取るのは\theta=\boxed{\ \ イ\ \ }\ のときである。\hspace{70pt}
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
投稿日:2022.07.16