東大 文系数学 2024 - 質問解決D.B.(データベース)

東大 文系数学 2024

問題文全文(内容文):
$0.3<\log_{10}{2}<0.31$
を用いてよい
(1)$5^n>10^{19}$
となる最小の自然数n
(2)$5^m+4^m>10^{19}$
となる最小の自然数m

2024東大文系過去問
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0.3<\log_{10}{2}<0.31$
を用いてよい
(1)$5^n>10^{19}$
となる最小の自然数n
(2)$5^m+4^m>10^{19}$
となる最小の自然数m

2024東大文系過去問
投稿日:2024.02.26

<関連動画>

【高校数学】原因の確率~病原菌の問題~ 2-9【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある病原菌の検査試薬は、病原菌に感染しているのに誤って陰性と判断する確率が
1%, 「感染していないのに誤って陽性と判断する確率が2%である。全体の1%がこの
病原菌に感染している集団から1つの個体を取り出すとき、陽性だったのに、実際
には病原菌に感染していない確率を求めよ。
この動画を見る 

整数問題!無限降下法を用いた証明!【数学 入試問題】【千葉大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$が3以上の整数のとき,$x^n+2y^n=4z^n$を満たす自然数$x,y,z$は存在しないことを証明せよ。

千葉大過去問
この動画を見る 

PとCの違い分かる?

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
数A PとCが混乱してしまう方への説明動画です
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第1問〜4つの音で作るチャイムの種類

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ ある学校では、ドミソシの4つの音を4つ組み合わせてチャイムを作り、\\
授業の開始・終了などを知らせるために鳴らしている。\\
チャイムは、図1(※動画参照)のように4×4の格子状に並んだ16個のボタン\\
を押すことによって作ることができる。縦方向は音の種類を表し、横方向は時間\\
を表している。例えば、ドミソシという音を1つずつ、\\
順番に鳴らすチャイムを作るには、図2(※動画参照)のようにボタンを押せばよい。\\
ただし、鳴らすことのできる音の数は縦1列あたり1つだけであり、\\
音を鳴らさない無音は許されず、それぞれの例で必ず1つの音を選ばなければならないとする。\\
(1)4つの音を1回ずつ鳴らすことを考えた場合、チャイムの種類は\ \boxed{\ \ アイウ\ \ }\ 通り。\\
(2)(1)に加えて、同じ音を連続して2回繰り返すことを1度だけしてもかまわない(例:ドミミソ)\\
とした場合、\\
チャイムの種類は合わせて\ \boxed{\ \ エオカ\ \ }\ 通りになる。\\
ただし、連続する音以外は高々1回までしか鳴らすことはできず、\\
それらは連続する音とは異ならなければならないものとする。\\
(3)(1)と(2)に加えて、同じ音を連続して4回繰り返すチャイムを許すと、\\
可能なチャイムの種類は合わせて\ \boxed{\ \ キクケ\ \ }\ 通りになる。\\
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 

図形の性質 円の位置関係【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間内の異なる2つの直線$ℓ 、m$ と異なる2つの平面$\alpha,\beta$について,
次の記述は常に正しいか。
(1) $\ell⊥\alpha、m⊥\alpha$ならば、$ℓ⊥m$である。
(2) $\ell ⊥\alpha、m⊥\alpha$ならば、$\alpha //\beta$である。
(3) $\ell //\alpha、m//\alpha$ならば、$\ell //m$である。
(4) $\ell //\alpha、m⊥\alpha$ならば、$\ell$と並行で$m$と垂直な直線がある。

正六角柱を底面に
平行でない1つの平面で切ったものである。
六角形$ABCDEF$ について,
辺$AB$ と平行な辺を答えよ。

立方体について、次の問いに答えよ。
(1) 辺$BF$ と垂直な面をすべて答えよ。
(2) 平面 $BFHD$ と平行な辺をすべて答えよ。
(3) この立方体に,平行な位置関係にある面は何組あるか。
(4) 平面$ABGH$と垂直な面をすべて答えよ。
この動画を見る 
PAGE TOP