問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (1)1から1000までの整数のうち、2,3,5の少なくとも2つで割り切れる数\\
は\boxed{\ \ アイウ\ \ }\ 個あり、2,3,5の少なくとも1つで割り切れ、\\
かつ6で割り切れない数は\boxed{\ \ エオカ\ \ }\ 個ある。
\end{eqnarray}
2022慶應義塾大学商学部過去問
\begin{eqnarray}
{\Large\boxed{1}}\ (1)1から1000までの整数のうち、2,3,5の少なくとも2つで割り切れる数\\
は\boxed{\ \ アイウ\ \ }\ 個あり、2,3,5の少なくとも1つで割り切れ、\\
かつ6で割り切れない数は\boxed{\ \ エオカ\ \ }\ 個ある。
\end{eqnarray}
2022慶應義塾大学商学部過去問
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (1)1から1000までの整数のうち、2,3,5の少なくとも2つで割り切れる数\\
は\boxed{\ \ アイウ\ \ }\ 個あり、2,3,5の少なくとも1つで割り切れ、\\
かつ6で割り切れない数は\boxed{\ \ エオカ\ \ }\ 個ある。
\end{eqnarray}
2022慶應義塾大学商学部過去問
\begin{eqnarray}
{\Large\boxed{1}}\ (1)1から1000までの整数のうち、2,3,5の少なくとも2つで割り切れる数\\
は\boxed{\ \ アイウ\ \ }\ 個あり、2,3,5の少なくとも1つで割り切れ、\\
かつ6で割り切れない数は\boxed{\ \ エオカ\ \ }\ 個ある。
\end{eqnarray}
2022慶應義塾大学商学部過去問
投稿日:2022.06.26