福田の入試問題解説〜慶應義塾大学2022年医学部第4問〜4次関数の増減凹凸と曲線の長さ - 質問解決D.B.(データベース)

福田の入試問題解説〜慶應義塾大学2022年医学部第4問〜4次関数の増減凹凸と曲線の長さ

問題文全文(内容文):
座標平面上の点A(a,b)を1つ固定し、曲線$y=x^2$上の点P$(x,x^2)$と点A
との距離の2乗をg(x)とおく。関数$y=g(x)$のグラフが区間$(-\infty,\infty)$において下に凸
となるための条件は$b \leqq \boxed{\ \ ア\ \ }$となることである。$b \gt \boxed{\ \ ア\ \ }$のとき$y=g(x)$のグラフは
2つの変曲点をもち、そのx座標は$\boxed{\ \ イ\ \ }$及び$\boxed{\ \ ウ\ \ }$である。
ただし$\boxed{\ \ イ\ \ }\lt \boxed{\ \ ウ\ \ }$とする。また、関数$y=g(x)$が極小となるxがただ1つであるために
a,bが満たすべき条件を$b \leqq F(a)$と書くと、$F(a)=\boxed{\ \ エ\ \ }$ である。
$b= F(a)$のとき、関数$y=g(x)$は$x=\boxed{\ \ オ\ \ }$において最小値をとる。
さらに、連立不等式$x \geqq 0,\ y \geqq x^2$が表す領域をDとするとき、
曲線$y=F(x)$のDに含まれる部分の長さLを求めると、$L=\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学医学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の点A(a,b)を1つ固定し、曲線$y=x^2$上の点P$(x,x^2)$と点A
との距離の2乗をg(x)とおく。関数$y=g(x)$のグラフが区間$(-\infty,\infty)$において下に凸
となるための条件は$b \leqq \boxed{\ \ ア\ \ }$となることである。$b \gt \boxed{\ \ ア\ \ }$のとき$y=g(x)$のグラフは
2つの変曲点をもち、そのx座標は$\boxed{\ \ イ\ \ }$及び$\boxed{\ \ ウ\ \ }$である。
ただし$\boxed{\ \ イ\ \ }\lt \boxed{\ \ ウ\ \ }$とする。また、関数$y=g(x)$が極小となるxがただ1つであるために
a,bが満たすべき条件を$b \leqq F(a)$と書くと、$F(a)=\boxed{\ \ エ\ \ }$ である。
$b= F(a)$のとき、関数$y=g(x)$は$x=\boxed{\ \ オ\ \ }$において最小値をとる。
さらに、連立不等式$x \geqq 0,\ y \geqq x^2$が表す領域をDとするとき、
曲線$y=F(x)$のDに含まれる部分の長さLを求めると、$L=\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学医学部過去問
投稿日:2022.06.19

<関連動画>

福田の数学〜立教大学2025経済学部第1問(1)〜指数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)$2^{1-3x} \geqq \left(\dfrac{1}{\sqrt2}\right)^x$を満たす

実数$x$の値の範囲は$\boxed{ア}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

わざとらしい連立方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{4x^2}{1+4x^2}=y$
$\dfrac{4y^2}{1+4y^2}=z$
$\dfrac{4z^2}{1+4z^2}=x$
これを解け.
この動画を見る 

√の中に8がいっぱい!!

アイキャッチ画像
単元: #数Ⅰ#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数
指導講師: 数学を数楽に
この動画を見る 

福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。

2023早稲田大学社会科学部過去問
この動画を見る 

指数の計算!!

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$7^8 = a$ , $8^7 = b$
$56^{56}$をa,bで表せ。
この動画を見る 
PAGE TOP