福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(2)〜ガウス記号と倍数 - 質問解決D.B.(データベース)

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(2)〜ガウス記号と倍数

問題文全文(内容文):
(2)$n$を奇数とする。nと$[\frac{3n+2}{2}]$の積が6の倍数であるための必要十分条件は、
nを$\boxed{\ \ エ\ \ }$で割った時の余りが$\boxed{\ \ オ\ \ }$となるときである。ただし、
実数xに対しxを超えない最大の整数を[x]と表す。
また、$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$は$0 \leqq \boxed{\ \ オ\ \ } \lt \boxed{\ \ エ\ \ }$
を満たす整数である。$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$を求める過程を解答欄に記述しなさい。

2022慶應義塾大学理工学部過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)$n$を奇数とする。nと$[\frac{3n+2}{2}]$の積が6の倍数であるための必要十分条件は、
nを$\boxed{\ \ エ\ \ }$で割った時の余りが$\boxed{\ \ オ\ \ }$となるときである。ただし、
実数xに対しxを超えない最大の整数を[x]と表す。
また、$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$は$0 \leqq \boxed{\ \ オ\ \ } \lt \boxed{\ \ エ\ \ }$
を満たす整数である。$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$を求める過程を解答欄に記述しなさい。

2022慶應義塾大学理工学部過去問
投稿日:2022.06.08

<関連動画>

三重大医)整数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
三重大学
a,b,c,d素数
$f(x)=ax^3+bx^2+cx+d$
f(-1),f(0),f(1)はいずれも3で割り切れないとき、f(x)=0は整数の解をもたないことを示せ。
この動画を見る 

割って余る問題 国学院高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
101と227をnで割ったときの余りが17になる自然数nのうち、最大のものを求めよ
この動画を見る 

もっちゃんと真面目に数学 素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散のお話

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散 解説動画です
この動画を見る 

【高校数学あるある】よく見る問題!下4桁を求めよ! #Shorts

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$99^{99}$の下4桁を求めよ。
この動画を見る 

ニャンニャン問題2022

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 222.......22$のようにすべての桁の数が$2$である整数の中には
必ず$2022$の倍数があることを示せ.
この動画を見る 
PAGE TOP