福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数 - 質問解決D.B.(データベース)

福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数

問題文全文(内容文):
nを自然数とする。整数i,jに対し、xy平面上の点$P_{i,j}$の座標を
$(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)$
で与える。さらに、i,jを動かしたとき、$P_{i,j}$の取り得る異なる座標の
個数を$S_n$とする。このとき、以下の問いに答えよ。
(1)$n=3$のとき、$\triangle P_{0,0}P_{0,1}P_{0,2}$および$\triangle P_{1,0}P_{1,1}P_{1,2}$を同一平面上
に図示せよ。
(2)$S_4$を求めよ。
(3)平面上の異なる2点A,Bに対して、$AQ=BQ=1$であるような
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。
(4)$S_n$をnを用いて表せ。

2022東京医科歯科大学理系過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。整数i,jに対し、xy平面上の点$P_{i,j}$の座標を
$(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)$
で与える。さらに、i,jを動かしたとき、$P_{i,j}$の取り得る異なる座標の
個数を$S_n$とする。このとき、以下の問いに答えよ。
(1)$n=3$のとき、$\triangle P_{0,0}P_{0,1}P_{0,2}$および$\triangle P_{1,0}P_{1,1}P_{1,2}$を同一平面上
に図示せよ。
(2)$S_4$を求めよ。
(3)平面上の異なる2点A,Bに対して、$AQ=BQ=1$であるような
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。
(4)$S_n$をnを用いて表せ。

2022東京医科歯科大学理系過去問
投稿日:2022.05.22

<関連動画>

福田の数学〜慶應義塾大学2022年薬学部第1問(3)〜部屋わけ・グループ分けの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)3つの部屋A,B,Cがある。この3つの部屋に対して、複数の生徒が以下の
試行(*)を繰り返し行うことを考える。
$(*)\left\{
\begin{array}{1}
・生徒それぞれが部屋を無作為に1つ選んで入る。\\
・生徒全員が部屋に入ったら、各部屋の生徒の人数を確認する。\\
・生徒全員が部屋を出る。\\
・1人の生徒しかいない部屋があった場合、その部屋に入った生徒は\\
次回以降の試行に参加しない。\\
\end{array}
\right.$

$(\textrm{i})$4人の生徒が試行(*)を1回行ったとき、2回目の試行に参加する生徒が
3人になる確率は$\boxed{\ \ オ\ \ }$である。
$(\textrm{ii})$5人の生徒が試行(*)を続けて2回行ったとき、3回目の試行に参加する
生徒が2人になる確率は$\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

【数A】【場合の数と確率】条件付き確率、帽子を忘れてくる確率 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
5回に1回の割合で帽子を忘れるくせのあるK君が、正月A、B、C3軒を順に年始回りをして家に帰ったところ、帽子を忘れてきたことに気がついた。2番目の家Bに忘れてきた確率を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$10進法で表したときm桁$(m \gt 0)$である正の整数nの第i桁目$(1 \leqq i \leqq m)$を
$m_i$としたとき、$i\neq j$のとき$n_i\neq n_j$であり、かつ、次の$(\textrm{a})$または$(\textrm{b})$のいずれか
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。
$(\textrm{a})1 \leqq i \lt m$であるiに対して、
iが奇数の時$n_i \lt n_{i+1}$となり、
iが偶数の時$n_i \gt n_{i+1}$となる。
$(\textrm{b})1 \leqq i \lt m$であるiに対して、$i$が奇数の時$n_i \gt n_{i+1}$となり、
$i$が偶数の時$n_i \lt n_{i+1}$となる。

例えば、361は$(\textrm{a})$を満たす10進法3桁のデコボコ数であり、$52409$は$(\textrm{b})$を
満たす10進法5桁のデコボコ数である。なお、4191は$(\textrm{a})$を満たすが「$i\neq j$のとき
$n_i\neq n_j$である」条件を満たさないため、10進法4桁のデコボコ数ではない。
(1)nが10進法2桁の数$(10 \leqq n \leqq 99)$の場合、
$n_1\neq n_2$であれば$(\textrm{a})$または$(\textrm{b})$を
満たすため、10進法2桁のデコボコ数は$\boxed{\ \ アイ\ \ }$個ある。
(2)nが10進法3桁の数$(100 \leqq n \leqq 999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ ウエオ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ カキク\ \ }$個あるため、
10進法3桁のデコボコ数は合計$\boxed{\ \ ケコサ\ \ }$個ある。
(3)nが10進法4桁の数$(1000 \leqq n \leqq 9999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ シスセソ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ タチツテ\ \ }$個あるため、
10進法4桁のデコボコ数は合計$\boxed{\ \ トナニヌ\ \ }$個ある。また10進法4桁のデコボコ数
の中で最も大きなものは$\boxed{\ \ ネノハヒ\ \ }$、最も小さなものは$\boxed{\ \ フヘホマ\ \ }$である。

2022慶應義塾大学総合政策学部過去問
この動画を見る 

2つの自然数が互いに素である確率 なぜかアレが出てきます

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
任意の2つの自然数が互いに素である確率を求めよ.
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第1問〜異なるペアになる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(1)8人のメンバーで、2人組(ペア)を4組作る方法は$n$通りある。$n$を$100$で割った商は$\boxed{\ \ ア\ \ }$で、余りは$\boxed{\ \ イ\ \ }$である。
(2)8人のメンバーで、2人組(ペア)を4組作って、ある作業に取り組んだ後、同じ8人で次の作業に取り組むペアを作るために、くじ引きをした。このとき、8人全員がくじ引き前と異なるメンバーとペアになる確率は$\dfrac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$ である。
ただし、くじは公平でどの2人もペアになる確率は等しいものとする。

2021早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP