問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ 座標空間において、原点Oと点A(1,0,-1)と点B(0,5,0)がある。\\
実数tを用いてt\ \overrightarrow{ OA }+\overrightarrow{ OB }と表される点全体をlとする。また、平面xy平面上\\
のy=x^2を満たす点全体からなる曲線をCとする。\\
(1)曲線C上の点P(a,a^2,0)を固定する。l上の点Qを、\overrightarrow{ OA }と\overrightarrow{ PQ }\\
が垂直であるようにとる。このとき、点Qの座標をaを用いて表せ。\\
(2)曲線C上の点Rとl上の点Sのうち、|\overrightarrow{ RS }|を最小にする点Rと点Sの\\
組み合わせを全て求めよ。また、そのときの|\overrightarrow{ RS }|の値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
\begin{eqnarray}
{\Large\boxed{6}}\ 座標空間において、原点Oと点A(1,0,-1)と点B(0,5,0)がある。\\
実数tを用いてt\ \overrightarrow{ OA }+\overrightarrow{ OB }と表される点全体をlとする。また、平面xy平面上\\
のy=x^2を満たす点全体からなる曲線をCとする。\\
(1)曲線C上の点P(a,a^2,0)を固定する。l上の点Qを、\overrightarrow{ OA }と\overrightarrow{ PQ }\\
が垂直であるようにとる。このとき、点Qの座標をaを用いて表せ。\\
(2)曲線C上の点Rとl上の点Sのうち、|\overrightarrow{ RS }|を最小にする点Rと点Sの\\
組み合わせを全て求めよ。また、そのときの|\overrightarrow{ RS }|の値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
単元:
#大学入試過去問(数学)#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ 座標空間において、原点Oと点A(1,0,-1)と点B(0,5,0)がある。\\
実数tを用いてt\ \overrightarrow{ OA }+\overrightarrow{ OB }と表される点全体をlとする。また、平面xy平面上\\
のy=x^2を満たす点全体からなる曲線をCとする。\\
(1)曲線C上の点P(a,a^2,0)を固定する。l上の点Qを、\overrightarrow{ OA }と\overrightarrow{ PQ }\\
が垂直であるようにとる。このとき、点Qの座標をaを用いて表せ。\\
(2)曲線C上の点Rとl上の点Sのうち、|\overrightarrow{ RS }|を最小にする点Rと点Sの\\
組み合わせを全て求めよ。また、そのときの|\overrightarrow{ RS }|の値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
\begin{eqnarray}
{\Large\boxed{6}}\ 座標空間において、原点Oと点A(1,0,-1)と点B(0,5,0)がある。\\
実数tを用いてt\ \overrightarrow{ OA }+\overrightarrow{ OB }と表される点全体をlとする。また、平面xy平面上\\
のy=x^2を満たす点全体からなる曲線をCとする。\\
(1)曲線C上の点P(a,a^2,0)を固定する。l上の点Qを、\overrightarrow{ OA }と\overrightarrow{ PQ }\\
が垂直であるようにとる。このとき、点Qの座標をaを用いて表せ。\\
(2)曲線C上の点Rとl上の点Sのうち、|\overrightarrow{ RS }|を最小にする点Rと点Sの\\
組み合わせを全て求めよ。また、そのときの|\overrightarrow{ RS }|の値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
投稿日:2022.05.18