福田の数学〜九州大学2022年文系第1問〜絶対値の付いた放物線と直線で囲まれた面積 - 質問解決D.B.(データベース)

福田の数学〜九州大学2022年文系第1問〜絶対値の付いた放物線と直線で囲まれた面積

問題文全文(内容文):
aを$-3 \lt a \lt 13$を満たす実数とし、次の曲線Cと直線lが接しているとする。
$C:y=|x^2+(3-a)x-3a|, l:y=-x+13$
以下の問いに答えよ。
(1)aの値を求めよ。
(2)曲線Cと直線lで囲まれた2つの図形のうち、点(a,0)が境界線上にある図形の面積を求めよ。

2022九州大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
aを$-3 \lt a \lt 13$を満たす実数とし、次の曲線Cと直線lが接しているとする。
$C:y=|x^2+(3-a)x-3a|, l:y=-x+13$
以下の問いに答えよ。
(1)aの値を求めよ。
(2)曲線Cと直線lで囲まれた2つの図形のうち、点(a,0)が境界線上にある図形の面積を求めよ。

2022九州大学文系過去問
投稿日:2022.05.09

<関連動画>

「二次関数の最大最小①」全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=2x^2-4x+c(-1 \leqq x \leqq 4)$の最大値が$7$となるような$c$の値を求めよ。
(2)関数$f(x)=ax^2-2ax+b(-1 \leqq x \leqq 2)$の最大値が$5$、最小値が$1$となるような$a,b$の値を求めよ。

2次関数$f(x)=x^2+2ax+2a-1(-2 \leqq x \leqq 3)$について、$a$の値が変化するときの最小値を$m(a)$とするとき、$m(a)$の最大値を求めよ。
この動画を見る 

【高校数学】  数Ⅰ-73  特殊な最大・最小③

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x,yが$x^2+y^2=16$を満たすとき、$6x+y^2$の最大値と最小値を求めよう。
この動画を見る 

2021近畿大(医)二次関数と格子点(隠れ2021年問題)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2次関数$f(x)$
$\displaystyle \lim_{h\to 0} \dfrac{f(3+h)-f(3)}{h}=-2$
$\displaystyle \lim_{x\to 1}\dfrac{f(x)-f(1)}{x-1}=2$
$f(47)=0$

(1)$f(x)$と$f(x)$が最大となる$x$
(2)$f(x)\geqq 0$を満たす整数$x$の個数を求めよ.
(3)自然数$k$,$f(x)\geqq k$を満たす$k$が$21$個である$k$の範囲を求めよ.
(4)$f(x)\geqq y$を満たす正の整数の組$(x,y)$の個数を求めよ.

2021近畿大(医)過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(1)軌跡の鉄則、高校2年生

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2-2(a+1)x+2a$ $\cdots$①の頂点を$P$とする。$a$が$1$より大きい
実数を動くとき、点Pの軌跡を求めよ。
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第1問〜放物線と接線

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。座標平面上の放物線$y=x^2+ax+b$をCとおく。
Cは、原点で垂直に交わる2本の接線$l_1,l_2$を持つとする。
ただし、Cと$l_1$の接点$P_1$のx座標は、Cと$l_2$の接点$P_2$のx座標より小さいとする。
(1)bをaで表せ。またaの値は全ての実数をとりうることを示せ。
(2)i=1,2に対し、円$D_i$を、放物線Cの軸上に中心を持ち、点$P_i$で$l_i$
と接するものと定める。$D_2$の半径が$D_1$の半径の2倍となるとき、aの値を求めよ。

2022東京大学文系過去問
この動画を見る 
PAGE TOP