福田の数学〜大阪大学2022年理系第5問〜媒介変数表示のグラフで囲まれた面積 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2022年理系第5問〜媒介変数表示のグラフで囲まれた面積

問題文全文(内容文):
座標平面において、tを媒介変数として
$x=e^t\cos t+e^\pi, y=e^t\sin t (0 \leqq t \leqq \pi)$
と表される曲線をCとする。曲線Cとx軸で囲まれた部分の面積を求めよ。

2022大阪大学理系過去問
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、tを媒介変数として
$x=e^t\cos t+e^\pi, y=e^t\sin t (0 \leqq t \leqq \pi)$
と表される曲線をCとする。曲線Cとx軸で囲まれた部分の面積を求めよ。

2022大阪大学理系過去問
投稿日:2022.04.22

<関連動画>

高専数学 微積I #234(1)(2) 極座標表示の曲線の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
(1)曲線$r=\theta^2\left(0\leqq \theta \leqq \dfrac{\theta}{2}\right)$と
半直線$\theta=\dfrac{\theta}{2}$で囲まれた図形の面積を求めよ.

(2)曲線$r=\cos\theta+2(0\leqq \theta \leqq 2\pi)$で囲まれた
図形の面積を求めよ.
この動画を見る 

福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 媒介変数表示
$x$=$\sin t$, $y$=$\cos(t-\frac{\pi}{6})\sin t$ (0≦$t$≦$\pi$)
で表される曲線をCとする。以下の問いに答えよ。
(1)$\frac{dx}{dt}$=0 または $\frac{dy}{dt}$=0 となる$t$の値を求めよ。
(2)Cの概形を$xy$平面上に描け。
(3)Cの$y$≦0 の部分と$x$軸で囲まれた図形の面積を求めよ。

2023神戸大学理系過去問
この動画を見る 

高専数学 微積I #227(2) 媒介変数表示関数の曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq \pi$とする.
$x=\cos t+t \sin t$
$y=\sin t-t \cos t$
の曲線の長さ$L$を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系087〜グラフを描こう(9)媒介変数表示のグラフ

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(9)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t\cos t-\sin t\\
y=t\sin t+\cos t
\end{array}
\right.
(0 \leqq t \leqq 2\pi)
\end{eqnarray}$
のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 

【高校数学】数Ⅲ-41 曲線の媒介変数表示②

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\theta$を媒介変数とする。次の式で表される図形はどのような曲線か。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3\cos\theta-2 \\
y=5\sin\theta+2
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\dfrac{3}{\cos\theta}+5\\
y=2\tan\theta-1
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP