福田の数学〜京都大学2022年文系第2問〜条件を満たす経路の総数と漸化式 - 質問解決D.B.(データベース)

福田の数学〜京都大学2022年文系第2問〜条件を満たす経路の総数と漸化式

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って\\
頂点をn回移動する。すなわち、この移動経路\\
P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n (ただしP_0=A)\\
において、P_0P_1,P_1P_2,\ldots,P_{n-1}P_nは全て辺であるとする。\\
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点P_nがA,B,Cの\\
いずれかとなるものの総数a_nを求めよ。
\end{eqnarray}

2022京都大学文系過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って\\
頂点をn回移動する。すなわち、この移動経路\\
P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n (ただしP_0=A)\\
において、P_0P_1,P_1P_2,\ldots,P_{n-1}P_nは全て辺であるとする。\\
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点P_nがA,B,Cの\\
いずれかとなるものの総数a_nを求めよ。
\end{eqnarray}

2022京都大学文系過去問
投稿日:2022.03.22

<関連動画>

超不人気!確率漸化式だよ

アイキャッチ画像
単元: #数Ⅰ#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
点Pは原点を出発して確率$p(0\leqq P\leqq 1)$で$+1$, $1-p$で$+2$進む.
自然数nの地点に到達する確率$P_n$を求めよ.

大阪教育大過去問
この動画を見る 

シグマの公式暗記してない?

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
シグマの公式についての動画
この動画を見る 

【数B】数列:2つ前までさかのぼる数学的帰納法:すべての自然数nについて、t=x+1/xとおくと、x^n+1/x^nはtのn次式であることを証明せよ。

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
すべての自然数$n$について、$t=x+\dfrac{1}{x}$とおくと、$\dfrac{x^n+1}{x^n}$
は$t$の$n$次式であることを証明せよ。

この動画を見る 

福田の数学〜立教大学2023年経済学部第2問〜利息計算と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 1年目の初めに新規に100万円を預金し、2年目以降の毎年初めに12万円を追加で預金する。ただし、毎年の終わりに、その時点での預金額の8%が利子として預金に加算される。自然数$n$に対して、$n$年目の終わりに利子が加算された後の預金額を$S_n$万円とする。このとき、以下の問いに答えよ。
ただし、$\log_{10}2$=0.3010, $\log_{10}3$=0.4771とする。
(1)$S_1$, $S_2$をそれぞれ求めよ。
(2)$S_{n+1}$を$S_n$を用いて表せ。
(3)$S_n$を$n$を用いて表せ。
(4)$\log_{10}1.08$を求めよ。
(5)$S_n$>513 を満たす最小の自然数$n$を求めよ。
この動画を見る 

北海道教育大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#北海道教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'91北海道教育大学過去問題
$a_1=b_1=1$ n自然数
$a_{n+1}=a_n+b_n$
$b_{n+1}=4a_n+b_n$
(1){ $a_n+kb_n$ }が等比数列となるようなkを求めよ。
(2)$a_n,b_n$の一般項
この動画を見る 
PAGE TOP