福田の数学・入試問題解説〜東北大学2022年理系第2問〜4次関数の極値と最小値 - 質問解決D.B.(データベース)

福田の数学・入試問題解説〜東北大学2022年理系第2問〜4次関数の極値と最小値

問題文全文(内容文):
aを実数とし、実数xの関数$f(x)=(x^2+3x+a)(x+1)^2$を考える。
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。
(2)$a \lt 2$のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる
xの値を$\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)$とする。
$f(\alpha_1) \lt f(\alpha_2)$を示せ。
(3)f(x)が$x \lt \beta$において単調減少し、かつ、$x=\beta$において最小値をとるとする。
このとき、aのとりうる値の範囲を求めよ。

2022東北大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とし、実数xの関数$f(x)=(x^2+3x+a)(x+1)^2$を考える。
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。
(2)$a \lt 2$のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる
xの値を$\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)$とする。
$f(\alpha_1) \lt f(\alpha_2)$を示せ。
(3)f(x)が$x \lt \beta$において単調減少し、かつ、$x=\beta$において最小値をとるとする。
このとき、aのとりうる値の範囲を求めよ。

2022東北大学理系過去問
投稿日:2022.03.18

<関連動画>

指数のフシギ〜お小遣いの悪魔の交渉術!? #高校数学 #指数 #数列 #shorts

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
指数のフシギ〜お小遣いの悪魔の交渉術!?
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #指数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
どっちがでかい?
$50^{50}$ VS $49^{51}$
*e < 3
この動画を見る 

【数Ⅰ】数と式:指数法則

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をしよう。
(1)$a^2\times a^3$
(2)$(a^2)^3$
(3)$(a^2b)^3$
(4)$(-2ab^2x^3)\times(-3a^2b)^3$
この動画を見る 

福田のおもしろ数学221〜x^y=y^xを解こう

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x^y=y^x \, (x>0, \, y>0)$ を満たす $(x, \, y)$ を求めて下さい。
この動画を見る 

【高校数学】 数Ⅱ-130 指数関数④・不等式編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式を解こう。

$2^{x}-32 \gt 0$

$(\displaystyle \frac{1}{3})^{x-1} \leqq \displaystyle \frac{1}{27}$

$(\displaystyle \frac{1}{4})^{x} \leqq 2^{x+2}$

$16^{x}-3・4^{x}-4 \leqq 0$

$(\displaystyle \frac{1}{3})^{2x-1}+5・(\displaystyle \frac{1}{3})^{x}-2 \lt 0$
この動画を見る 
PAGE TOP