福田の数学〜京都大学2022年理系第3問〜3つの数の最大公約数 - 質問解決D.B.(データベース)

福田の数学〜京都大学2022年理系第3問〜3つの数の最大公約数

問題文全文(内容文):
nを自然数とする。3つの整数$n^2+2,n^4+2,n^6+2$の最大公約数$A_n$を求めよ。

2022京都大学理系過去問
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。3つの整数$n^2+2,n^4+2,n^6+2$の最大公約数$A_n$を求めよ。

2022京都大学理系過去問
投稿日:2022.03.02

<関連動画>

オイラーの多面体定理 説明(英語)

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの多面体定理 説明動画です
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第2問〜空間ベクトルと正八面体

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 図のような一辺の長さが1の正八面体ABCDEFがある。
2点P,Qはそれぞれ辺AD, BC上にあり
$\overrightarrow{PQ}$$\bot$$\overrightarrow{AD}$かつ$\overrightarrow{PQ}$$\bot$$\overrightarrow{BC}$
を満たすとする。
(1)$\overrightarrow{AD}$と$\overrightarrow{BC}$のなす角は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\pi$である。
(2)|$\overrightarrow{AP}$|=$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$, |$\overrightarrow{BQ}$|=$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$である。
(3)|$\overrightarrow{PQ}$|=$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\sqrt{\boxed{\ \ ナ\ \ }}$である。
(4)平面EPQと直線BFの交点をRとすると|$\overrightarrow{BR}$|=$\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}$である。
この動画を見る 

8進数の7の倍数・3の倍数判定法

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8$進法で表記された
$\boxed{a}\boxed{b}\boxed{c}\boxed{d}\boxed{e}\boxed{f}$
が①$7$で割り切れる必要十分条件を求めよ.
②$3$で割り切れる必要十分条件を求めよ.
この動画を見る 

宮崎大 整数問題基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数Pを2進法で表したらすべての位の数が1でk桁であったkは素数であることを示せ.

宮崎大過去問
この動画を見る 

中学生も解ける?整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$P=a^2-a+2ab+b^2-b$ (a,bは自然数)
Pが素数となるようなa,bをすべて求めよ。(鹿児島大学)
この動画を見る 
PAGE TOP