2023年京大の空間ベクトル!ベクトルが苦手な人も絶対に取りたい問題【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

2023年京大の空間ベクトル!ベクトルが苦手な人も絶対に取りたい問題【京都大学】【数学 入試問題】

問題文全文(内容文):
空間内の4点$O、A、B、C$は同一平面上にないとする。点$D,P,O$を次のように定める。
点$D$は$\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{2OB}+\overrightarrow{3OC}$を満 たし、点Pは線分$OA$を1: 2に内分し、点Qは線分$OB$の中点である。
さらに、直線$OD$上の点$R$を $OC$が交点を持つように定める。
このとき、線分$OR$の長さと線分$RD$の長さの比$OR: RD$を求めよ。

2023京都大過去問
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
空間内の4点$O、A、B、C$は同一平面上にないとする。点$D,P,O$を次のように定める。
点$D$は$\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{2OB}+\overrightarrow{3OC}$を満 たし、点Pは線分$OA$を1: 2に内分し、点Qは線分$OB$の中点である。
さらに、直線$OD$上の点$R$を $OC$が交点を持つように定める。
このとき、線分$OR$の長さと線分$RD$の長さの比$OR: RD$を求めよ。

2023京都大過去問
投稿日:2023.03.23

<関連動画>

福田の数学〜慶應義塾大学2024年医学部第4問〜空間に浮かぶ四面体の平面による切り口の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標空間の4点O(0,0,0),A(-3,-1,1),B(2,-2,2),C(3,3,3)を頂点とする四面体OABCの、平面$z$=$t$による切り口を$S_t$とする。
(1)$S_t$は1<$t$<2のとき四角形となり、$t$=1および$t$=2のとき三角形となる。
1<$t$1 となるので、点Eはこの六面体の外にある。
(さ),(し),(す)の選択肢:ABC,ABD,ACD,BCD,OAD,OBD,OCD
(4)1<$t$<2に対して、(3)の六面体を平面$z$=$t$で切った切り口の面積を$U(t)$とすると、$U(t)$は$t$=$\boxed{\ \ (た)\ \ }$(ただし1<$\boxed{\ \ (た)\ \ }$<2)において最大値$\boxed{\ \ (ち)\ \ }$をとる。
この動画を見る 

【数C】空間ベクトル:原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(1)〜空間図形の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)右図(※動画参照)のような正六面体$ABCD-EFGH$において、辺$FG$の中点を$M$とする。
このとき、三角形$CHM$の重心を$X$とすると、

$\overrightarrow{ AX }=\boxed{\ \ ア\ \ }\ \overrightarrow{ AB }+\boxed{\ \ イ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ AE }$
と表せ、直線$AG$と三角形$CHM$の交点を$Y$とすると

$\overrightarrow{ AY }=\boxed{\ \ エ\ \ }\ \overrightarrow{ AB }+\boxed{\ \ オ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ カ\ \ }\ \overrightarrow{ AE }$
と表せる。

解答群:$⓪\ 1 \ \ \ \ ①\ \frac{1}{2} \ \ \ \ ②\ \frac{1}{3} \ \ \ \ ③\ \frac{2}{3} \ \ \ \ ④\ \frac{1}{4} $
$⑤\ \frac{3}{4} \ \ \ \ ⑥\ \frac{1}{5} \ \ \ \ ⑦\ \frac{4}{5} \ \ \ \ ⑧\ \frac{1}{6} \ \ \ \ ⑨\ \frac{5}{6}$

2022明治大学全統過去問
この動画を見る 

【数B】空間ベクトル:球面の方程式! 次の条件を満たす球面の方程式を求めよう。(1)直径の両端が2点(1,-4,3) (3,0,1)である。(2)点(1,-2,5)を通り、3つの座標平面に接する。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす球面の方程式を求めよう。
(1)直径の両端が2点(1,-4,3) (3,0,1)である。
(2)点(1,-2,5)を通り、3つの座標平面に接する。
この動画を見る 

【空間ベクトル】直線の方程式 発展分野

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【空間ベクトル】直線の方程式 発展分野解説動画です
-----------------
点$A(3,2,1)$を通り、$\vec{ d }=(1,2,4)$に平行な直線の方程式は?
この動画を見る 
PAGE TOP