青山学院大 - 質問解決D.B.(データベース)

青山学院大

問題文全文(内容文):
【青山学院大 過去問】

AとB対戦

Aが勝つ確率$\displaystyle \frac{2}{3}$

Bが勝つ確率$\displaystyle \frac{1}{3}$

最大7試合でどちらかが4勝した時点で終了
第6試合で決着する確率
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
【青山学院大 過去問】

AとB対戦

Aが勝つ確率$\displaystyle \frac{2}{3}$

Bが勝つ確率$\displaystyle \frac{1}{3}$

最大7試合でどちらかが4勝した時点で終了
第6試合で決着する確率
投稿日:2023.06.19

<関連動画>

場合の数 円順列基本【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・大人2人と子供8人が円形のテーブルに着席するとき、次のような並び方は何通りあるか。
(1)大人2人が隣り合う。
(2)大人2人が向かい合う。

・男子4人、女子4人が手をつないで輪を作るとき、次のような並び方は何通りあるか。
(1)女子4人が続いて並ぶ。
(2)男女が交互に並ぶ。

・8人の中から選ばれた5人が円形上に並ぶとき、並び方は何通りあるか。
この動画を見る 

【中学数学・数A】中高一貫校問題集3(論理・確率編)61:場合の数と確率:場合の数:硬貨の選び方 5円玉4枚、10円玉2枚、50円玉1枚、100円玉2枚の一部、または全部使って支払うことができる金額は何通りか求めよう。

アイキャッチ画像
単元: #算数(中学受験)#数A#場合の数と確率#場合の数#場合の数#場合の数#数学(高校生)
教材: #TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
5円玉4枚、10円玉2枚、50円玉1枚、100円玉2枚の一部、または全部使って支払うことができる金額は何通りか求めよう。
この動画を見る 

福田の数学〜早稲田大学2021年商学部第1問(4)〜空間内の点の移動の場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)座標空間において、各座標が整数である6個の点P_0,P_1,P_2,P_3,P_4,P_5を、\\
次の条件を満たすように重複を許して選ぶ。\\
(\textrm{i}) P_0=(0,0,0)\\
(\textrm{ii}) P_kとP_{k+1}との距離は1 (k=0,1,2,3,4,5)\\
(\textrm{iii}) P_0とP_5との距離は1\\
\\
このとき、選び方の総数は\boxed{\ \ エ\ \ }通りである。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 

「ひっかけ方」 By にっし~Diaryさん

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
ポケモントレーナーA君は、伝説のポケモンMに遭遇し、ポケモンNを戦闘に出した。
A君は持ち物として、モンスターボール、スーパーボール、ハイパーボールをそれぞれ
十分に持っている。

1ターンにとれる行動は、「ポケモンNで伝説のポケモンMを攻撃する」か「3種類のい
ずれかのボールを1個投げる」だけである。
また、連続する2ターンのうち少なくとも1ターンは必ずハイパーボールを投げる。

10ターン目に伝説のポケモンを捕まえたとするとき、A君が10ターンで取った行動の組
み合わせとして考えられるのは全部で何通りか。
ただし、伝説のポケモンMは何回攻撃しても倒れることはないとする。
この動画を見る 

2020年 大阪大 確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない

$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ

(2)
$P_{n+1}$を$P_n$で表せ

(3)
$P_n$を求めよ

出典:2020年大阪大学 過去問
この動画を見る 
PAGE TOP