福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[1]。2次関数の問題。 - 質問解決D.B.(データベース)

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[1]。2次関数の問題。

問題文全文(内容文):
${\Large\boxed{2}}$[1] 陸上競技の短距離100m走では、100mを走るのに
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。
ストライドとピッチはそれぞれ以下の式で与えられる。
ストライド $(m/歩) =\frac{100(m)}{100mを走るのにかかった歩数(歩)}$,

$ピッチ (歩/秒) =\frac{100m を走るのにかかった歩数(歩)}{タイム(秒)}$

ただし、100mを走るのにかかった歩数は、最後の1歩が
ゴールラインをまたぐこともあるので、
少数で 表される。以下、単位は必要のない限り省略する。
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、
ストライドは$\frac{100}{48.5}$より約2.06、ピッチ は
$\frac{ 48.5 }{10.81}$ より約4.49である。

(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、
ストライドは1歩あたりの進む距離
なので、1秒あたりの進む距離すなわち平均速度は、
xとzを用いて$\boxed{ア}(m/秒)$と表される。
これよりタイムと、ストライド、ピッチとの関係は$タイム=\frac{100}{\boxed{ア}}$ と
表されるので$\boxed{ア}$ が最大となるとき
にタイムが最もよくなる。ただし、タイムがよくなるとは、
タイムの値が小さくなることである。

$\boxed{ア}$の解答群
⓪ $x+z$ ①$z-x$ ②$xz$ ③$\frac{x+z}{2}$ ④$\frac{z-x}{2}$ ⑤$\frac{xz}{2}$

(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと
ピッチを考えることにした。右に表は、太郎さんが練習で
100mを3回走った時のストライドとピッチのデータである。
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、
ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという
関係があると考えてピッチがストライドの1次関数として
表されると仮定した。このとき、ピッチzはストライドxを用いて
$z=\boxed{イウ}\ x+\frac{\boxed{エオ}}{5} \ldots②$ と表される。
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80
まで成り立つと仮定すると、xの値の範囲は
$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$

(3)$y=\boxed{ア}$とおく。②を$y=\boxed{ア}$に代入することにより、
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド
とピッチを求めるためには、$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$の範囲で
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは
$x=\boxed{ケ}.\boxed{コサ}$のときである。よって、太郎さんのタイムが最もよくなるのは、
ストライドが$\boxed{ケ}.\boxed{コサ}$のときであり、このとき、ピッチは$\boxed{シ}.\boxed{スセ}$
である。また、このときの太郎さんのタイムは①により$\boxed{ソ}$である。

$\boxed{ソ}$の解答群
⓪9.68  ①9.97  ②10.09  ③10.33  ④10.42  ⑤10.55

2021共通テスト数学過去問
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$[1] 陸上競技の短距離100m走では、100mを走るのに
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。
ストライドとピッチはそれぞれ以下の式で与えられる。
ストライド $(m/歩) =\frac{100(m)}{100mを走るのにかかった歩数(歩)}$,

$ピッチ (歩/秒) =\frac{100m を走るのにかかった歩数(歩)}{タイム(秒)}$

ただし、100mを走るのにかかった歩数は、最後の1歩が
ゴールラインをまたぐこともあるので、
少数で 表される。以下、単位は必要のない限り省略する。
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、
ストライドは$\frac{100}{48.5}$より約2.06、ピッチ は
$\frac{ 48.5 }{10.81}$ より約4.49である。

(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、
ストライドは1歩あたりの進む距離
なので、1秒あたりの進む距離すなわち平均速度は、
xとzを用いて$\boxed{ア}(m/秒)$と表される。
これよりタイムと、ストライド、ピッチとの関係は$タイム=\frac{100}{\boxed{ア}}$ と
表されるので$\boxed{ア}$ が最大となるとき
にタイムが最もよくなる。ただし、タイムがよくなるとは、
タイムの値が小さくなることである。

$\boxed{ア}$の解答群
⓪ $x+z$ ①$z-x$ ②$xz$ ③$\frac{x+z}{2}$ ④$\frac{z-x}{2}$ ⑤$\frac{xz}{2}$

(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと
ピッチを考えることにした。右に表は、太郎さんが練習で
100mを3回走った時のストライドとピッチのデータである。
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、
ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという
関係があると考えてピッチがストライドの1次関数として
表されると仮定した。このとき、ピッチzはストライドxを用いて
$z=\boxed{イウ}\ x+\frac{\boxed{エオ}}{5} \ldots②$ と表される。
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80
まで成り立つと仮定すると、xの値の範囲は
$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$

(3)$y=\boxed{ア}$とおく。②を$y=\boxed{ア}$に代入することにより、
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド
とピッチを求めるためには、$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$の範囲で
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは
$x=\boxed{ケ}.\boxed{コサ}$のときである。よって、太郎さんのタイムが最もよくなるのは、
ストライドが$\boxed{ケ}.\boxed{コサ}$のときであり、このとき、ピッチは$\boxed{シ}.\boxed{スセ}$
である。また、このときの太郎さんのタイムは①により$\boxed{ソ}$である。

$\boxed{ソ}$の解答群
⓪9.68  ①9.97  ②10.09  ③10.33  ④10.42  ⑤10.55

2021共通テスト数学過去問
投稿日:2022.01.10

<関連動画>

【高校数学】数Ⅰ-39 2次関数⑤(平方完成の練習編)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次式を平方完成しよう。
①$y=x^2+2x-1$
②$y=2x^2-8x-6$
③$y=x^2-4x$
④$y=-2x^26x+3$
⑤$y=3x^2-5x+2$
⑥$y=\displaystyle \frac{1}{3}x^2+4x$
この動画を見る 

二次方程式の応用 広陵 (広島県)ごめんなさい。予告問題間違えました。()の外の2乗はないです。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xについての方程式$x^2-(a+1)x+a=0$の解の1つは他の解の3倍になる。
a>1のとき a=▢
a<1のとき a=▢
広陵高校
この動画を見る 

【数Ⅰ】【2次関数】絶対値を含む関数のグラフ ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|

次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)

次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
この動画を見る 

大学入試問題#143 東海大学医学部(2020) 因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$(a+b+c)^3-a^3-b^3-c^3$を因数分解せよ。

出典:2020年東海大学医学部 入試問題
この動画を見る 

【高校数学】数Ⅰ-30 命題④

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数、m,nは自然数とする。
次の条件の否定を書こう。

①$x<-1$かつ$y \geqq 2$
②$-5 \leqq x<3$
③nは奇数または3の倍数
④m,nともに6の倍数

◎次の命題の否定を書き、その真偽を調べよう。
⑤すべての素数nについて、nは奇数である。
この動画を見る 
PAGE TOP