福田のわかった数学〜高校3年生理系101〜大小比較(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系101〜大小比較(1)

問題文全文(内容文):
数学$textrm{III}$大小比較(1)$999^{1000}$と$1000^{999}$
の大小を比較せよ。
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$textrm{III}$大小比較(1)$999^{1000}$と$1000^{999}$
の大小を比較せよ。
投稿日:2021.12.04

<関連動画>

指数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 8^a=27^b=64^c=24,\dfrac{2022 abc}{ab+bc+ca}$
の値を求めよ.
この動画を見る 

2022乗

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(5+2 \sqrt 6)^{1011}(\sqrt 3 - \sqrt 2)^{2022}$
この動画を見る 

指数・対数の基本.2通りの解法(実質同じだけど)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 3^a=125,5^b-49,7^c=81,abc=?$
これを解け.
この動画を見る 

解けるように作られた指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)^{x-y}=2 \\
2^{y-x},(x+y)=1
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第4問〜指数関数と直線の位置関係と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=e^x$を考える。
(1)$a,b$を実数とし、$a \geqq 0$とする。曲線Cと直線$y=ax+b$が共有点をもつため
のaとbの条件を求めよ。
(2)正の実数tに対し、C上の点$A(t,e^t)$を中心とし、直線$y=x$に接する円Dを
考える。直線$y=x$と円Dの接点Bのx座標は$\boxed{\ \ タ\ \ }$であり、
円Dの半径は$\boxed{\ \ チ\ \ }$である。線分ABを3:2に内分する点をPとし、Pのx座標、y座標
をそれぞれX(t),Y(t)とする。このとき、等式
$\lim_{t \to \infty}\frac{Y(t)-kX(t)}{\sqrt{\left\{X(t)\right\}^2+\left\{Y(t)\right\}^2}}=0$
が成り立つような実数kを定めると$k=\boxed{\ \ ツ\ \ }$である。
ただし、$\lim_{t \to \infty}te^{-t}=0$である。

2022慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP