福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積

問題文全文(内容文):
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。

2021立教大学経済学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。

2021立教大学経済学部過去問
投稿日:2021.10.13

<関連動画>

【高校数学】 数B-1 有向線分とベクトル

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように①____を指定した線分を有向線分といい、Aを②____、Bを③____という。
そして、位置を気にしないで、④____と⑤____だけで定まる量をベクトルといい、有向線分ABで表されるベクトルを$\overrightarrow{ AB }$と書き表す。
また、ベクトル$\overrightarrow{ AB }$の大きさを⑥____と書き、特に大きさが1であるベクトルを⑦____ベクトルという。
※図は動画内参照
この動画を見る 

数学「大学入試良問集」【14−3 垂直と平面ベクトルと正射影】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle OAB$において、辺$OA,$辺$OB$の長さをそれぞれ$a,b$とする。
また、$\angle AOB$は直角ではないとする。
2つのベクトル$\overrightarrow{ OA }$と$\overrightarrow{ OB }$の内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を$k$とおく。
次の問いに答えよ。

(1)
直線$OA$上に点$C$を、$\overrightarrow{ BC }$が$\overrightarrow{ OA }$と垂直になるようにとる。
$\overrightarrow{ OC }$を$a,k,\overrightarrow{ OA }$を用いて表せ。

(2)
$a=\sqrt{ 2 },b=1$とする。
直線$BC$上に点$H$を、$\overrightarrow{ AH }$が$\overrightarrow{ OB }$と垂直になるようにとる。
$\overrightarrow{ OH }=u\overrightarrow{ OA }+v\overrightarrow{ OB }$とおくとき、$u$と$v$をそれぞれ$k$で表せ。
この動画を見る 

福田の数学〜九州大学2025理系第1問〜平面に垂直なベクトルの絶対値の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

座標空間内の$3$点$A(1,1,-5),B(-1,-1,7),C(1,-1,3)$を

通る平面を$\alpha$とする。

点$P(a,b,t)$を通り$\alpha$に垂直な直線と

$xy$平面との交点を$Q$とする。

(1)点$Q$の座標を求めよ。

(2)$t$がすべての実数値をとって変化するときの

$OQ$の最小値が$1$以下となるような

$a,b$の条件を求めよ。

ただし、$O$は原点である。

$2025$年九州大学理系過去問題
この動画を見る 

福田の数学〜青山学院大学2025理工学部第5問〜鋭角三角形の条件と垂心の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$\triangle OAB$は鋭角三角形であり、

$\vert \overrightarrow{OA}\vert=4,\vert \overrightarrow{OB}\vert=3$

を満たしている。

$\overrightarrow{OA}\cdot \overrightarrow{OB}=k$とおくとき、以下の問いに答えよ。

(1)$k$のとり得る値の範囲を求めよ。

上で与えた$\triangle OAB$の頂点$A,B$から

それぞれの対辺に下ろした$2$本の垂線の交点

を$H$とし、辺$AB$を$2:1$に内分する点を$C$とする。

(2)$\overrightarrow{OH}$を$\overrightarrow{OA},\overrightarrow{OB}$および$k$を用いて表せ。

(3)$3$点$O,H,C$が同一直線上にあるとき、

$k$の値と$\dfrac{OH}{OC}$を求めよ。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

【数学】ベクトルの面積公式の語呂合わせ・証明を10分でまとめてみた 

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】ベクトルの面積公式の語呂合わせ・証明のまとめ動画です
この動画を見る 
PAGE TOP