福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積

問題文全文(内容文):
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。

2021立教大学経済学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。

2021立教大学経済学部過去問
投稿日:2021.10.13

<関連動画>

【数C】ベクトル:2021年高3第1回駿台全国模試 (文系)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=1、OB=2、∠AOB=θ(0<θ<π)であるとする。
∠AOBの二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは (a・p)²-2(b・p)+4=0 を満たすと する。
ただし、a=OA、b=OB、p=OPとする。次の問に答えよ。

(1)OCをa,bで表せ。
(2)pをa,b,θで表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、OH・p=b・pであることを示せ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルと図形2 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$\triangle \rm OAB$において、辺$\rm OB$の中点を$\rm M$辺$\rm AB$を$1:2$に内分する点を$\rm C$、辺$\rm OA$を$2:3$に内分する点を$\rm D$、線分$\rm CM$と線分$\rm BD$の交点を$\rm P$とする。また、$\overrightarrow {\rm OA}=\vec{a},\overrightarrow{\rm OB}=\vec{b}$とする。
(1)$\overrightarrow{\rm OP}$を$\vec{a},\vec{b}$を用いて表せ。
(2)直線$\rm OP$と辺$\rm AB$の交点を$\rm Q$とするとき、$\rm AQ:QB$を求めよ。

問題2
$\rm OA=3, OC=2$である長方形$\rm OABC$がある。辺$\rm OA$を$1:2$に内分する点を$\rm D$、辺$\rm AB$を$3:1$に内分する点を$\rm E$とするとき、$\rm CD\perp OE$であることを証明せよ。

問題3
鋭角三角形$\rm ABC$の外心を$\rm O$、辺$\rm BC$の中点を$\rm M$とする。頂点$\rm A$から辺$\rm BC$に垂線$\rm AN$を下ろし、線分$\rm AN$上に点$\rm H$を$\rm AH=2OM$となるようにとると、$\rm H$は$\triangle \rm ABC$の垂心であることを証明せよ。

問題4
$\rm OA=6,OB=4,\angle AOB=60°$である$\triangle \rm OAB$において、頂点$\rm A$から辺$\rm OB$に垂線$\rm AC$,頂点$\rm B$から辺$\rm OA$に垂線$\rm BD$を下ろす。線分$\rm AC$と線分$\rm BD$の交点を$\rm H$とするとき、$\overrightarrow{\rm OH}$を$\rm \overrightarrow{OA},\overrightarrow{OB}$を用いて表せ。
この動画を見る 

【高校数学】 数B-14 ベクトルの内積③

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\overrightarrow{ a }=(a_1.a_2). \overrightarrow{ b }=(b_1.b_2)$のとき、$\overrightarrow{ a }・\overrightarrow{ b }=$①______

②$\overrightarrow{ a }= (4,5),\overrightarrow{ b }=(3,-2)$の内積を求めよう。

③$|\overrightarrow{ a }|=3,|\overrightarrow{ b }|=2,\overrightarrow{ a }・\overrightarrow{ b }=-3$を満たす2つのベクトル$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角$\theta$を求めよう。

④$\overrightarrow{ a }=(-1.2),\overrightarrow{ b }=(3.-1)$のなす角$\theta$を求めよう。
この動画を見る 

福田の数学〜北海道大学2023年文系第2問〜角の2等分線の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 三角形OABは辺の長さがOA=3, OB=5, AB=7であるとする。また、$\angle$AOBの2等分線と直線ABとの交点をPとし、頂点Bにおける外角の2等分線と直線OPとの交点をQとする。
(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OP }$|の値を求めよ。
(2)$\overrightarrow{ OQ }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OQ }$|の値を求めよ。

2023北海道大学文系過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第2問〜ベクトルと領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の3点O,A,Bが
|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$+2$\overrightarrow{OB}$|=1 かつ (2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+$\overrightarrow{OB}$)=$\displaystyle\frac{1}{3}$
を満たすとする。
(1)(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+2$\overrightarrow{OB}$)を求めよ。
(2)平面上の点Pが
|$\overrightarrow{OP}$ー($\overrightarrow{OA}$+$\overrightarrow{OB}$)|≦$\frac{1}{3}$ かつ $\overrightarrow{OP}$・(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)≦$\frac{1}{3}$
を満たすように動くとき、|$\overrightarrow{OP}$|の最大値と最小値を求めよ。

2023大阪大学理系過去問
この動画を見る 
PAGE TOP