福田の数学〜立教大学2021年理学部第1問(5)〜対数の計算 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年理学部第1問(5)〜対数の計算

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (5)\ A=4^{(4^4)},\ B=(4^4)^4 のとき、\log_2(\log_2A)-\log_2(\log_2B)の値を\\
整数で表すと\ \boxed{\ \ カ\ \ }\ である。
\end{eqnarray}

2021立教大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (5)\ A=4^{(4^4)},\ B=(4^4)^4 のとき、\log_2(\log_2A)-\log_2(\log_2B)の値を\\
整数で表すと\ \boxed{\ \ カ\ \ }\ である。
\end{eqnarray}

2021立教大学理工学部過去問
投稿日:2021.10.06

<関連動画>

岡山大 対数方程式の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_2|3x^3-18x+4\sqrt{ 2 }|=k$の異なる実数解の個数を求めよ$(k$実数$)$

出典:1995年岡山大学 過去問
この動画を見る 

岐阜薬科大 対数の不等式 良問

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_x y-\log_y x^{\frac{1}{2}}\lt -\dfrac{1}{2}$を満たす点$(x,y)$の領域を図示せよ.

岐阜薬科大過去問
この動画を見る 

近畿大(医)お知らせもあるよ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_{10} 5$
の小数第二位を求めよ
この動画を見る 

対数の基本

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023横浜市立(医・理)
$
\\
2^{log_49}の値
$
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第2問(1)〜指数対数不等式の表す領域の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)次の連立不等式の表す領域の面積は\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }} である。\\
\left\{\begin{array}{1}
\displaystyle\log_4y+\log_{\frac{1}{4}}(x-2)+\log_4\frac{1}{8-x} \geqq -1\\
2^{y+x^2+11} \leqq 1024^{x-1}\\
\end{array}\right.
\end{eqnarray}

2021早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP