福田の数学〜立教大学2021年理学部第1問(5)〜対数の計算 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年理学部第1問(5)〜対数の計算

問題文全文(内容文):
${\Large\boxed{1}}$ (5)$A=4^{(4^4)},\ B=(4^4)^4$のとき、$\log_2(\log_2A)-\log_2(\log_2B)$の値を
整数で表すと$\boxed{\ \ カ\ \ }$である。

2021立教大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (5)$A=4^{(4^4)},\ B=(4^4)^4$のとき、$\log_2(\log_2A)-\log_2(\log_2B)$の値を
整数で表すと$\boxed{\ \ カ\ \ }$である。

2021立教大学理工学部過去問
投稿日:2021.10.06

<関連動画>

対数とみせて様々な知識を使う良問【数学 入試問題】【奈良県立医大】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$の関数$ f(x)=(\log_{10}\dfrac{x}{a})(\log_{10}\dfrac{x}{b})$の最小値が$-\dfrac{1}{4}$であるとき、$a,b$mの値を求めよ。
ただし、$a,b$は$ab=100,a>b$を満たす正の実数とする。

奈良県立医大過去問
この動画を見る 

【高校数学】 数Ⅱ-131 対数とその性質①

アイキャッチ画像
単元: #指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0.a≠1$とするとき、任意の正の数$M$に対して$a^{p}=M$となる実数$P$が、ただ1つ定まる。
この$P$を、$a$を①____とする$M$の対数といい、$\log_aM$と書く。 また、$M$をこの対数の②____という。(対数の②‗‗‗‗‗‗‗は③____)

◎次の関係を④~⑥は$p=\log_aM$、⑦~⑨は$a^{p}=M$の形で表そう。

④$3^4=81$

⑤$8^{\frac{2}{3}}=4$

⑥$9^{-\frac{1}{2}}=\displaystyle \frac{1}{3}$

⑦$\log_264=6$

⑧$\log_5\sqrt{ 5 }=\displaystyle \frac{1}{2}$

⑨$\log_{10}\displaystyle \frac{1}{1000}=-3$
この動画を見る 

東北大 対数方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東北大学過去問題
連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y = y^x \\
log_xy + log_yx = \frac{13}{6}
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

福田の数学〜東北大学2024年理系第2問〜対数不等式の証明と自然数解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 以下の問いに答えよ。
(1)$t$を$t$>1 を満たす実数とする。正の実数$x$が2つの条件
(a)$x$>$\displaystyle\frac{1}{\sqrt t-1}$
(b)$x$≧$2\log_tx$
をともに満たすとする。このとき、不等式
$x$+1>$2\log_t(x+1)$
を示せ。
(2)$n$≦$2\log_2n$ を満たす正の整数$n$をすべて求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系093〜グラフを描こう(15)対数関数、凹凸、漸近線

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(15)
$y=x^3(\log x-\frac{4}{3})$のグラフを描け。凹凸、漸近線も調べよ。
この動画を見る 
PAGE TOP