問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)\ 方程式\ x^2+x+1=0の2つの解を\alpha,\ \betaとする。またbを実数として、\\
方程式\ x^2+x+1=0の2つの解を\gamma,\ \deltaとする。複素数平面上で、4点A(\alpha),\\
B(\beta),C(\gamma),D(\delta)が同じ円上にあるとき、bの値は±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}となる。
\end{eqnarray}
2021明治大学全統過去問
\begin{eqnarray}
{\Large\boxed{2}} (2)\ 方程式\ x^2+x+1=0の2つの解を\alpha,\ \betaとする。またbを実数として、\\
方程式\ x^2+x+1=0の2つの解を\gamma,\ \deltaとする。複素数平面上で、4点A(\alpha),\\
B(\beta),C(\gamma),D(\delta)が同じ円上にあるとき、bの値は±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}となる。
\end{eqnarray}
2021明治大学全統過去問
単元:
#数Ⅱ#2次関数#図形の性質#複素数平面#2次方程式と2次不等式#周角と円に内接する四角形・円と接線・接弦定理#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)\ 方程式\ x^2+x+1=0の2つの解を\alpha,\ \betaとする。またbを実数として、\\
方程式\ x^2+x+1=0の2つの解を\gamma,\ \deltaとする。複素数平面上で、4点A(\alpha),\\
B(\beta),C(\gamma),D(\delta)が同じ円上にあるとき、bの値は±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}となる。
\end{eqnarray}
2021明治大学全統過去問
\begin{eqnarray}
{\Large\boxed{2}} (2)\ 方程式\ x^2+x+1=0の2つの解を\alpha,\ \betaとする。またbを実数として、\\
方程式\ x^2+x+1=0の2つの解を\gamma,\ \deltaとする。複素数平面上で、4点A(\alpha),\\
B(\beta),C(\gamma),D(\delta)が同じ円上にあるとき、bの値は±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}となる。
\end{eqnarray}
2021明治大学全統過去問
投稿日:2021.09.22