2次方程式と2次不等式
2次不等式はこの手順通りに考えれば解けちゃう!? #数学 #高校数学 #不等式
【高校数学】2次不等式はこれでマスター!この手順通りに考えれば解けちゃう【数学のコツ】
複雑な2次方程式。あれ使え。桐光学園
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$2(x-1)^2-4\sqrt3(x-1)+1=0$
2024桐光学園高等学校
この動画を見る
方程式を解け
$2(x-1)^2-4\sqrt3(x-1)+1=0$
2024桐光学園高等学校
一手間加えるだけで美味しい方程式
2次方程式 3通りで解説!! 2024日比谷高校
単元:
#数Ⅰ#大学入試過去問(数学)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$(x-1)^2-4(x-2)^2=0$
2024日比谷高等学校
この動画を見る
方程式を解け
$(x-1)^2-4(x-2)^2=0$
2024日比谷高等学校
意外と間違える!?二次方程式 2024京都府
単元:
#数Ⅰ#大学入試過去問(数学)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$8x^2=22x$
2024京都府
この動画を見る
方程式を解け
$8x^2=22x$
2024京都府
知っていれば一瞬!!2次方程式と解と式の関係 2024早稲田実業
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$3x^2-4x-2=0$の2つの解をa,bとする。
$(3a^2-4a+2)(6b^2-8b)=?$
2024早稲田実業学校
この動画を見る
$3x^2-4x-2=0$の2つの解をa,bとする。
$(3a^2-4a+2)(6b^2-8b)=?$
2024早稲田実業学校
二次方程式の解が1つ 灘高校2024
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xの二次方程式
$3(x+a)^2=(2a^2-1)(x+a)+x^2-2ax-3a^2$
が解を1つしかもたないようなaの値をすべて求めよ
灘高等学校2024
この動画を見る
xの二次方程式
$3(x+a)^2=(2a^2-1)(x+a)+x^2-2ax-3a^2$
が解を1つしかもたないようなaの値をすべて求めよ
灘高等学校2024
ルートを含む二次方程式の計算 2024早稲田本庄最初の一問
単元:
#数Ⅰ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\sqrt 5 + \sqrt 3 )x^2+2 \sqrt 3x - \sqrt 5+ \sqrt 3= 0$を解け
2024早稲田大学 本庄高等学院
この動画を見る
$(\sqrt 5 + \sqrt 3 )x^2+2 \sqrt 3x - \sqrt 5+ \sqrt 3= 0$を解け
2024早稲田大学 本庄高等学院
二次方程式の解と確率 2024立教新座
単元:
#数Ⅰ#数A#2次関数#場合の数と確率#2次方程式と2次不等式#確率#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
さいころを3回続けて投げるとき、1回目、2回目、3回目に出た目の数をそれぞれa,b,cとする。
2次方程式$ax^2+bx+c=0$について2つの解が-2、-3となる確率を求めよ
2024立教新座高等学校
この動画を見る
さいころを3回続けて投げるとき、1回目、2回目、3回目に出た目の数をそれぞれa,b,cとする。
2次方程式$ax^2+bx+c=0$について2つの解が-2、-3となる確率を求めよ
2024立教新座高等学校
2024年の2次方程式
ちょっと変わった2次方程式
君はどうやって解く? 3通りで解説 二次方程式の計算 八王子東
二次方程式の解が2つの整数 戸山
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xの2次方程式$x^2+ax-8=0$の2つの解がともに整数であるとき、aの値をすべて求めよ。
戸山高等学校
この動画を見る
xの2次方程式$x^2+ax-8=0$の2つの解がともに整数であるとき、aの値をすべて求めよ。
戸山高等学校
4次関数の最小値
4次方程式
2次関数 4S数学問題集数Ⅰ 228 グラフと2次不等式証明【ホーン・フィールドがていねいに解説】
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
a (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0
この動画を見る
a (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0
数学どうにかしたい人へ
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
引くばか 二次方程式の応用 昭和学院秀英
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式$2x^2-5x+c=0$の2つの解の比が2:3である。
定数cの値を求めよ。
昭和学院秀英高等学校
この動画を見る
2次方程式$2x^2-5x+c=0$の2つの解の比が2:3である。
定数cの値を求めよ。
昭和学院秀英高等学校
いきなり展開したら負け!東邦大附属東邦
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式を解け
$(100 - x)(101 -x) = 104-x$
東邦大学付属東邦高等学校
この動画を見る
2次方程式を解け
$(100 - x)(101 -x) = 104-x$
東邦大学付属東邦高等学校
気付けば気持ちいいぞ!2次方程式 東邦大附属東邦
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式を解け
$(x+100)^2=2x+199$
東邦大学付属東邦高等学校
この動画を見る
2次方程式を解け
$(x+100)^2=2x+199$
東邦大学付属東邦高等学校
2次関数 4S数学問題集数Ⅰ 233,234,235 グラフと2次不等式4【ホーン・フィールドがていねいに解説】
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|
次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)
3 (4STEP問題235)
次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
この動画を見る
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|
次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)
3 (4STEP問題235)
次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
2次不等式の係数決定の問題を解説(数学I 2次関数)
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2次不等式$ax^2+bx-6 \lt 0$の解が$-1 \lt x \lt 3$となるように、定数$a,b$の値を求めよ。
この動画を見る
2次不等式$ax^2+bx-6 \lt 0$の解が$-1 \lt x \lt 3$となるように、定数$a,b$の値を求めよ。
一度は間違えたことある方程式
二次方程式の応用 広陵 (広島県)ごめんなさい。予告問題間違えました。()の外の2乗はないです。
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xについての方程式$x^2-(a+1)x+a=0$の解の1つは他の解の3倍になる。
a>1のとき a=▢
a<1のとき a=▢
広陵高校
この動画を見る
xについての方程式$x^2-(a+1)x+a=0$の解の1つは他の解の3倍になる。
a>1のとき a=▢
a<1のとき a=▢
広陵高校
2次関数 4S数学問題集数Ⅰ 224,225,226 グラフと2次不等式4【ホーン・フィールドがていねいに解説】
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次関数y=x²+mx+2が次の条件を満たすように、定数mの値の範囲を定めよ。
(1)この2次関数のグラフとx軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフとx軸のx<-1の部分が異なる2点で交わる。
放物線y=x²+2(m-1)x+5-m²がx軸の正の部分と負の部分のそれぞれと交わるように、定数mの値の範囲を定めよ。
2次方程式x²+2mx+2m+3=0が次のような実数解をもつように、定数mの値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
この動画を見る
2次関数y=x²+mx+2が次の条件を満たすように、定数mの値の範囲を定めよ。
(1)この2次関数のグラフとx軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフとx軸のx<-1の部分が異なる2点で交わる。
放物線y=x²+2(m-1)x+5-m²がx軸の正の部分と負の部分のそれぞれと交わるように、定数mの値の範囲を定めよ。
2次方程式x²+2mx+2m+3=0が次のような実数解をもつように、定数mの値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
2次関数 4S数学問題集数Ⅰ 222,223 グラフと2次不等式3【ホーン・フィールドがていねいに解説】
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の$x$についての不等式を解け。
(1)$x^2-(a+2)x+2a\lt 0$
(2)$x^2-(a-1)x-a\gt 0$
(3)$x^2-ax-2a^2\leqq 0$
不等式$x^2-(a+1)x+a\lt 0$を満たす整数$x$がちょうど2個だけ存在するように、定数$a$の値の範囲を定めよ。
この動画を見る
次の$x$についての不等式を解け。
(1)$x^2-(a+2)x+2a\lt 0$
(2)$x^2-(a-1)x-a\gt 0$
(3)$x^2-ax-2a^2\leqq 0$
不等式$x^2-(a+1)x+a\lt 0$を満たす整数$x$がちょうど2個だけ存在するように、定数$a$の値の範囲を定めよ。
2次関数 4S数学問題集数Ⅰ 213,214 条件付きの解【野本さんちのツトムくんがていねいに解説】
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
213 次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)2次関数 $y=x^2+mx+1$において、$y$の値が常に正である。
(2)放物線 $y=x^2-2mx+3m-2$が$y\lt 0$の部分を通らない。
(3)関数 $y=mx^2+4x+m-3$において、$y$の値が常に負である。
214 2次関数 $y=x^2-mx+m+3$のグラフの頂点が第1象限にあるとき、定数$m$の値の範囲を求めよ。
この動画を見る
213 次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)2次関数 $y=x^2+mx+1$において、$y$の値が常に正である。
(2)放物線 $y=x^2-2mx+3m-2$が$y\lt 0$の部分を通らない。
(3)関数 $y=mx^2+4x+m-3$において、$y$の値が常に負である。
214 2次関数 $y=x^2-mx+m+3$のグラフの頂点が第1象限にあるとき、定数$m$の値の範囲を求めよ。
2次関数 4S数学問題集数Ⅰ 211,212,217 解の個数、連立【野本さんちのツトムくんがていねいに解説】
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
211 $m$は定数とする。放物線 $y=x^2+(m+3)x+3m+4$と$x$軸の共有点の個数を調べよ。
212 次の2次不等式の解がすべての実数であるとき、定数$m$の値の範囲を求めよ。
(1)$x^2-mx+1\gt 0$ (2)$-x^2+mx+2m\leqq 0$
217 次の連立不等式を満たす整数xの値を全て求めよ。
(1)$2x^2-x-3\lt 0$ (2)$x^2+2x\gt 1$
$3x^2-10x+3\lt 0$ $x^2-x\leqq 6$
この動画を見る
211 $m$は定数とする。放物線 $y=x^2+(m+3)x+3m+4$と$x$軸の共有点の個数を調べよ。
212 次の2次不等式の解がすべての実数であるとき、定数$m$の値の範囲を求めよ。
(1)$x^2-mx+1\gt 0$ (2)$-x^2+mx+2m\leqq 0$
217 次の連立不等式を満たす整数xの値を全て求めよ。
(1)$2x^2-x-3\lt 0$ (2)$x^2+2x\gt 1$
$3x^2-10x+3\lt 0$ $x^2-x\leqq 6$
【短時間でマスター!!】連立2次不等式の書き方を解説!〔現役講師解説、数学〕
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + 3x + 2 > 0 \\
x^2 + 2x - 3 < 0
\end{array}
\right.
\end{eqnarray}$
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + 3x + 2 > 0 \\
x^2 + 2x - 3 < 0
\end{array}
\right.
\end{eqnarray}$