2次方程式と2次不等式 - 質問解決D.B.(データベース)

2次方程式と2次不等式

4次関数の最小値

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
最小値を求めよ
$f(x)=(x^2+2x+2)^2+x^2+2x$
この動画を見る 

4次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+5)^4+(x+7)^4=82$を解け
この動画を見る 

2次関数 4STEP数Ⅰ 228 グラフと2次不等式証明【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
a (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0
この動画を見る 

2次関数 4STEP数Ⅰ 233,234,235 グラフと2次不等式4【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
1 (4STEP問題233)
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|

2 (4STEP問題234)
次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)

3 (4STEP問題235)
次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
この動画を見る 

2次関数 4STEP数Ⅰ 224,225,226 グラフと2次不等式4【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数y=x²+mx+2が次の条件を満たすように、定数mの値の範囲を定めよ。
(1)この2次関数のグラフとx軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフとx軸のx<-1の部分が異なる2点で交わる。

放物線y=x²+2(m-1)x+5-m²がx軸の正の部分と負の部分のそれぞれと交わるように、定数mの値の範囲を定めよ。

2次方程式x²+2mx+2m+3=0が次のような実数解をもつように、定数mの値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
この動画を見る 

2次関数 4STEP数Ⅰ 222,223 グラフと2次不等式3【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のxについての不等式を解け。
(1)x²-(a+2)x+2a<0
(2)x²-(a-1)x-a>0
(3)x²-ax-2a²≦0

不等式x²-(a+1)x+a<0を満たす整数xがちょうど2個だけ存在するように、定数aの値の範囲を定めよ。
この動画を見る 

2次関数 4STEP数Ⅰ 213,214 条件付きの解【野本さんちのツトムくんがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
213 次の条件を満たすように、定数mの値の範囲を定めよ。
 (1) 2次関数 y=x²+mx+1において、yの値が常に正である。
 (2) 放物線 y=x²-2mx+3m-2がy<0の部分を通らない。
 (3) 関数 y=mx²+4x+m-3において、yの値が常に負である。

214 2次関数 y=x²-mx+m+3のグラフの頂点が第1象限にあるとき、定数mの値の範囲を求めよ。
この動画を見る 

2次関数 4STEP数Ⅰ 211,212,217 解の個数、連立【野本さんちのツトムくんがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
211 mは定数とする。放物線 y=x²+(m+3)x+3m+4とx軸の共有点の個数を調べよ。
212 次の2次不等式の解がすべての実数であるとき、定数mの値の範囲を求めよ。
  (1) x²-mx+1>0   (2) -x²+mx+2m≦0
217 次の連立不等式を満たす整数xの値を全て求めよ。
  (1) 2x²-x-3<0 (2) x²+2x>1
  3x²-10x+3<0   x²-x≦6
この動画を見る 

2次関数 4STEP数Ⅰ 208,209,210 2次関数の解の範囲【野本さんちのツトムくんがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
208 次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
  (1)  x²+2mx+3=0       (2) x²+mx+m=0
209 2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
  (1) 異なる2つの実数解をもつ (2) 実数解をもたない
210 次の条件を満たすように、実数mの値の範囲を定めよ。
  (1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
  (2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
この動画を見る 

2次関数 4STEP数Ⅰ 191,192 2次関数の点の通過【野本さんちのツトムくんがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
191 次の条件を満たす放物線の方程式を求めよ。
 (1) 3点(-4,0),(-2,0),(0,-4)を通る。
 (2) 点(2,0)でx軸に接し、点(-2,12)を通る。
192 a,b,cの値を入力すると、関数 y=ax²+bx+c のグラフが表示されるコンピュータソフトがある。
あるa,b,cの値を入力すると、グラフは図のように表示された。
(1) a, b, c, b²-4ac, a+b+c の符号をいえ。
(2) このa,bの値を変えずに、cの値だけを変化させたとき、変わらないものを次の中からすべて選べ。
また、変わらない理由を説明せよ。
  ① グラフとx軸の共有点の個数
  ② グラフの頂点のx座標の符号
  ③ グラフの頂点のy座標の符号
この動画を見る 

2次関数 4STEP数Ⅰ 220,221 グラフと2次不等式2【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
(4STEP問題220)
2つの放物線y=x²+mx+3m,y=x²-mx+m²-3が、いずれもx軸と共有点をもたないとき、定数mの値の範囲を求めよ。

(4STEP問題221)
2つの2次方程式x²+mx+m=0・・・・・・①、x²-2mx+m+6=0・・・・・・②がある。次の条件を満たすように、定数mの値の範囲を定めよ。
(1)①、②がともに異なる2つの実数解をもつ。
(2)①、②がともに実数解をもたない。
(3)①、②の少なくとも一方が実数解をもつ。
(4) ①、②のうち一方だけが、異なる2つの実数解をもつ。
この動画を見る 

2次関数 4STEP数Ⅰ 218,219 グラフと2次不等式1【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
1(4STEP問題218)
2次不等式ax²+x+b>0の解がx<-3,2<xであるとき、定数a,bの値を求めよ。

2(4STEP問題219)
a,bは定数とする。2次不等式4x²+ax+b<0の解が1<x<5/4であるとき、2次不等式bx²+ax+4≧0の解を求めよ。
この動画を見る 

【ホーン・フィールドがていねいに解説】2次関数 4STEP数Ⅰ 215,216 グラフと2次不等式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
1(4STEP問題215)
立方体の縦を1cm短くし、横はそのまま、高さは2cm長くして直方体を作る。このとき、直方体の体積がもとの立方体の体積より大きくならないのは、もとの立方体の1辺の長さがどのような範囲にあるときか。

2(4STEP問題216)
和が20である2つの整数の積が96以上になるとき、この2つの整数の組をすべて求めよ。
この動画を見る 

【野本さんちのツトムくんがていねいに解説】2次関数 4STEP数Ⅰ 189,190 2次関数のグラフ応用

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
189 次の2次関数のグラフがx軸から切り取る線分の長さを求めよ。
 (1) y=x²-2x-8      (2) y=x²+6x+7
190 2次関数 y=x²-4x+2m のグラフとx軸の共有点の個数は,定数 m の値によってどのように変わるか。
この動画を見る 

【野本さんちのツトムくんがていねいに解説】2次関数 4STEP数Ⅰ 183,184 文字を含む2次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
183 aを定数とするとき,次の方程式を解け。
(1) a²x + 1 = a(x + 1)
(2) ax² + (a² - 1)x - a = 0

184 2つの2次方程式 x² + (m + 3)x + 8 = 0, x² + 5x + 4m = 0 が共通な実数解をもつように
定数mの値を定め, その共通な解を求めよ。
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問1

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#2次関数#2次方程式と2次不等式#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問1.
1辺の長さが6mの正方形の形をした花壇Aがあります。花壇Aより縦が 2a m長く、横が a m長い長方形の形をした
花壇Bをつくるとき、次の問いに答えなさい。ただし、a>0とします。
(1) 花壇Bの面積は、花壇Aの面積より何m²大きいですか。aを用いて表しなさい。この問題は答えだけを書いてください。
(2) 花壇Bの面積が花壇Aの面積より72m²大きいとき、aを求めるための方程式をつくり、それを解いてaの値を求めなさい。
この動画を見る 

図で理解する2次方程式の解の公式~ほーみんに数学教えてみた~

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
図で理解する2次方程式の解の公式~ほーみんに数学教えてみた~
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ p,qを相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。\\
・係数はすべて整数1でx^2の係数は1である。\hspace{100pt}\\
・f(1)=pqである。\hspace{193pt}\\
・方程式f(x)=0は整数解をもつ。\hspace{135pt}\\
以下の問いに答えよ。\hspace{200pt}\\
\\
(1)f(x)をすべて求めよ。\hspace{170pt}\\
(2)(1)で求めたものをf_1(x),f_2(x),\ldots,f_m(x)とする。2m次方程式\hspace{3pt}\\
f_1(x)×f_2(x)×\ldots×f_m(x)=0\hspace{100pt}\\
の相異なる解の総和はp,qによらないことを示せ。\hspace{60pt}
\end{eqnarray}
この動画を見る 

x,yの2次式の値の範囲

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x,yは実数とする.x^2+2y^2-4y=2を満たすとき,x+4y^2-8yの値の範囲を求めよ.$
この動画を見る 

サクッとスッキリ

アイキャッチ画像
単元: #2次方程式と2次不等式
指導講師: 鈴木貫太郎
この動画を見る 

一文字削除からの判別式【2014年早稲田大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$a,b,c$が
$a+b+c=8,a^2+b^2+c^2=32$
を満たす時、実数$c$の最大値を求めよ。
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[1]。2次方程式、2次関数、必要十分条件の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第2問\ [1] p,qを実数とする。\\
花子さんと太郎さんは、次の二つの2次方程式について考えている。\\
x^2+px+q=0 \ldots①\\
x^2+qx+p=0 \ldots②\\
①または②を満たす実数xの個数をnとおく。\\
\\
(1)p=4,q=-4のとき、n=\boxed{\ \ ア\ \ }である。\\
また、p=1,q=-2のとき、n=\boxed{\ \ イ\ \ }である。\\
(2)p=-6のとき、n=3になる場合を考える。\\
\\
花子:例えば、①と②を共に満たす実数xがあるときはn=3に\\
なりそうだね。\\
太郎:それを\alphaとしたら、\alpha^2-6\alpha+q=0と\alpha^2+q\alpha-6=0が\\
成り立つよ。\\
花子:なるほど。それならば、\alpha^2を消去すれば、\alphaの値が求められそうだね。\\
太郎:確かに\alphaの値が求まるけど、実際にn=3となっているか\\
どうかの確認が必要だね。\\
花子:これ以外にもn=3となる場合がありそうだね。\\
\\
n=3となるqの値は\\
q=\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }\\
である。ただし、\boxed{\ \ ウ\ \ } \lt \boxed{\ \ エ\ \ }とする。\\
\\
p=-6に固定したまま、qの値だけを変化させる。\\
y=x^2-6x+q \ldots③\\
y=x^2+qx-6 \ldots④\\
\\
(1)この二つのグラフについて、q=1のときのグラフを点線で、\\
qの値を1から増加させたときのグラフを実線でそれぞれ表す。\\
このとき、③のグラフの移動の様子を示すと\boxed{\ \ オ\ \ }となり、\\
④のグラフの移動の様子を示すと\boxed{\ \ カ\ \ }となる。\\
\\
\boxed{\ \ オ\ \ }, \boxed{\ \ カ\ \ }については、最も適当なものを、次の⓪~⑦\\
のうちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
なお、x軸とy軸は省略しているが、x軸は右方向、\\
y軸は上方向がそれぞれ正の方向である。\\
(※選択肢は動画参照)\\
\\
(4)\boxed{\ \ ウ\ \ } \lt q \lt \boxed{\ \ エ\ \ }とする。全体集合Uを実数全体の集合とし、\\
Uの部分集合A,Bを\\
\\
A=\left\{x\ |\ x^2-6x+q \lt 0 \right\}\\
B=\left\{x\ |\ x^2+qx-6 \lt 0 \right\}\\
\\
とする。Uの部分集合Xに対し、Xの補集合を\bar{ X }と表す。このとき、\\
次のことが成り立つ。\\
\\
・x \in Aは、x \in Bであるための\boxed{\ \ キ\ \ }。\\
・x \in Bは、x \in \bar{ A }であるための\boxed{\ \ ク\ \ }。\\
\\
\\
\boxed{\ \ キ\ \ }, \boxed{\ \ ク\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪必要条件であるが、十分条件ではない\\
①十分条件であるが、必要条件ではない\\
②必要十分条件である\\
③必要条件でも十分条件でもない
\end{eqnarray}
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[1]。2次方程式の解に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [1]cを正の定数とする。xの2次方程式\\
2x^2+(4c-3)x+2c^2-c-11=0 \ldots①\\
について考える。\\
(1)c=1のとき、①の左辺を因数分解すると(\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ })(x-\boxed{\ \ ウ\ \ })であるから、\\
①の解はx=-\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ア\ \ }}, \boxed{\ \ ウ\ \ }である。\\
\\
\\
(2)c=2のとき、①の解はx=\frac{-\ \boxed{\ \ エ\ \ }±\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キ\ \ }} であり、大きい方の解を\alphaとすると\\
\frac{5}{\alpha}=\frac{\boxed{\ \ ク\ \ }+\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サ\ \ }}である。また、m \lt \frac{5}{\alpha} \lt m+1を満たす整数mは\boxed{\ \ シ\ \ }である。\\
\\
\\
(3)太郎さんと花子さんは、①の解について考察している。\\
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数\\
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。\\
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。   \\
\\
①の解が異なる2つの有理数であるような正の整数cの個数は\boxed{\ \ ス\ \ }個である。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生061〜対称式と領域(3)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 対称式と領域(3)\\
実数x,\ yがx^2+xy+y^2=6\ を\\
満たしながら動くとき\\
x^2y+xy^2-x^2-2xy-y^2+x+y\\
の取り得る値の範囲を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生060〜対称式と領域(2)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 対称式と領域(2)\\
実数x,\ yがx^2+xy+y^2 \leqq 1を\\
満たしながら動くとき\\
xy+2(x+y)\\
の最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件

アイキャッチ画像
単元: #数Ⅱ#2次関数#図形の性質#複素数平面#2次方程式と2次不等式#周角と円に内接する四角形・円と接線・接弦定理#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)\ 方程式\ x^2+x+1=0の2つの解を\alpha,\ \betaとする。またbを実数として、\\
方程式\ x^2+x+1=0の2つの解を\gamma,\ \deltaとする。複素数平面上で、4点A(\alpha),\\
B(\beta),C(\gamma),D(\delta)が同じ円上にあるとき、bの値は±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}となる。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生059〜対称式と領域(1)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 対称式と領域(1)\\
実数x,\ yがx^2+y^2 \leqq 1を\\
満たしながら動くとき、\\
次の点の存在範囲を図示せよ。\\
(1)P(x+y,\ x-y)  (2)Q(x+y,\ xy)
\end{eqnarray}
この動画を見る 

【数Ⅰ】2次関数:2次不等式 解から定数の決定

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次不等式ax²+8x+b>0の解が、-1<x<5のとき、a,bの値を求めよう。
この動画を見る 

【数Ⅰ】高2生必見!! 2019年度8月 第2回 全統高2模試 大問2-1_2次関数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
実数xについての2つの不等式 (x-a²)(x-2a+2)≦0・・・① │2x-1│≦2・・・② がある。ただし、aは実数の定数とする。
(1)a=0のとき、①を解け。
(2)②を解け。
(3)①かつ②を満たす整数xがちょうど1個だけ存在するようなaの値の範囲を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第2問(3)〜絶対値の付いた2次不等式の解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (3)\ aを正の定数とし、不等式\\
|x^2-ax+3| \leqq 1\\
の解を実数の範囲で考える。\\
0 \lt a \lt \boxed{\ \ ナ\ \ }のとき、この不等式の解は存在しない。\\
\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }のとき、この不等式の解は\\
ある実数p,qによってp \leqq x \leqq qと表される。\\
a \gt \boxed{\ \ ニ\ \ }のときこの不等式の解は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}
この動画を見る 
PAGE TOP