福田のわかった数学〜高校3年生理系074〜平均値の定理(2)極限の問題 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系074〜平均値の定理(2)極限の問題

問題文全文(内容文):
数学$\textrm{III}$ 平均値の定理(2)
極限値
$\lim_{x \to 0}\frac{e^x-e^{\sin x}}{x-\sin x}$
を求めよ。
単元: #関数と極限#微分とその応用#関数の極限#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 平均値の定理(2)
極限値
$\lim_{x \to 0}\frac{e^x-e^{\sin x}}{x-\sin x}$
を求めよ。
投稿日:2021.09.14

<関連動画>

福田の1.5倍速演習〜合格する重要問題039〜早稲田大学2019年度理工学部第2問〜正n角形の周の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
nは3以上の自然数とする。面積1の正n角形$P_n$を考え、その周の
長さを$L_n$とする。次の問いに答えよ。
(1)$(L_n)^2$を求めよ。
(2)$\lim_{n \to \infty}L_n$を求めよ。
(3)$n \lt k$ならば$(L_n)^2 \gt (L_k)^2$となることを示せ。

2019早稲田大学理工学部過去問
この動画を見る 

東京海洋大 3次関数の基本

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$と$y=ax+b$が相異なる3点で交わる$a,b$の条件を求めよ.

2021東京海洋大過去問
この動画を見る 

【高校数学】数Ⅲ-62 合成関数①

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$y$が$u$の関数で$y=g(u)$と表され、$u$が$x$の関数で$u=f(x)$と表されるとき、
$y$は$x$の関数で$y=g(f(x))$と表され、これを$f$と$g$の合成関数という。
また、$y=g(f(x))$を$y=①$と表す。

②$f(x)= 4x ^ 2 、g(x) = -\dfrac{1}{2} (x + 1)$であるとき、
合成関数$(gof)(x)、(fog)(x)$をそれぞれ求めなさい。
この動画を見る 

福田の数学〜曲線の長さの計算は大丈夫?〜明治大学2023年理工学部第2問〜曲線の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\dfrac{1}{8}x^2-logx(x \gt0)$とし、座標平面上の曲線y=f(x)をCとする。ただし、logxは自然対数を表す。関数f(x)は$x=\fbox{あ}$で最小値をとる。曲線C上の点A(1,f(1))における曲線Cの接線をlとすると、lの方程式は$y=\fbox{い}$である。
曲線Cと接線lおよび直線x=2で囲まれた図形の面積は$\fbox{う}$である。また、点$(t,f(t))(t \lt1)$をPとし、点Aから点Pまでの曲線Cの長さをL(t)とすると$L(2)=\fbox{え}$である。また、$\displaystyle \lim_{ t \to 1+0 } \dfrac{L(t)}{t-1}= \fbox{お}$である。

2023明治大学理工学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(4)〜合成関数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(4)数列$\left\{a_n\right\},\left\{b_n\right\}$(ただし$a_1\neq 0$かつ$a_1\neq 1$)に対して1次関数
$f_n(x)=a_nx+b_n (n=1,2,\ldots)$
を定める。また、$\alpha=a_1, \beta=b_1$とおく。すべての自然数nに対して
$(f_n◦f_1)(x)=f_{n+1}(x)$
が成り立つとき、数列$\left\{a_n\right\},\left\{b_n\right\}$の一般項を$\alpha$と$\beta$の式で表すと
$a_n=\boxed{\ \ ク\ \ }, b_n=\boxed{\ \ ケ\ \ }$
となる。

2022慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP