福田のわかった数学〜高校3年生理系068〜微分(13)関数方程式 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系068〜微分(13)関数方程式

問題文全文(内容文):
数学$\textrm{III}$ 微分(13) 関数方程式
$x \gt 0$ で定義された微分可能な関数$f(x)$において、$f(xy)=f(x)+f(y)$
が正の数$x,\ y$に対して常に成り立ち、$f'(1)=1$とする。

(1)$f(1)$ を求めよ。
(2)$f'(x)=\frac{1}{x}$ を示せ。
単元: #微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(13) 関数方程式
$x \gt 0$ で定義された微分可能な関数$f(x)$において、$f(xy)=f(x)+f(y)$
が正の数$x,\ y$に対して常に成り立ち、$f'(1)=1$とする。

(1)$f(1)$ を求めよ。
(2)$f'(x)=\frac{1}{x}$ を示せ。
投稿日:2021.08.27

<関連動画>

【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 $y^2=8x$ 上の点P($1,-2\sqrt2$)における接線の方程式を求めよう。
この動画を見る 

微分方程式⑦-3【2階微分方程式の一般解を求める】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\dfrac{d^2x}{dt^2}-\dfrac{dx}{dt}-2x=e^{-2t}$
(2)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}+2x=e^{-2t}$
(3)$\dfrac{d^2x}{dt^2}+4\dfrac{dx}{dt}+4x=e^{-2t}$

(1)~(3)の2階微分方程式の一般解を求めよ.
この動画を見る 

福田のおもしろ数学449〜3次式が常に0以上となるxの範囲

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

実数$a$に対して関数$f(x)$を考える。

$f(x)=x^3-2x^2+(2a-1)x-2a$

$0\leqq a \leqq 1$のとき、

常に$f(x)\geqq 0$となる$x$の範囲を求めよ。
   
この動画を見る 

【数Ⅲ】微分の応用:漸近線があるグラフの概形part1

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)= 2x+\sqrt{x^2-1}$ の漸近線を求めよ
この動画を見る 

福田の数学〜名古屋大学2023年理系第2問〜回転体の体積と関数の増減と最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#面積、体積#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
$\displaystyle\lim_{a \to \infty}(r(a)-a)$を求めよ。

2023名古屋大学理系過去問
この動画を見る 
PAGE TOP