微分法 - 質問解決D.B.(データベース)

微分法

【数Ⅲ】微分法:整式の次数に着目して解く問題

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
f(x)は0でない整式で次を満たすとする。
・xf''(x) + (1 - x)f'(x) + 3f(x) = 0
・f(0) = 1
(1)f(x)の次数を求めよ
(2)f(x)を求めよ
この動画を見る 

【数Ⅲ】東大の文系の問題を微分で解いてみた【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
kを正の実数とし,二次方程式$x^{2}+x-k=0$の二つの実数解を、$\alpha,\beta$とする。
$kがk>2$の範囲を動くとき,

$\displaystyle \frac{\alpha^{3}}{1-\beta}+\displaystyle \frac{\beta^{3}}{1-\alpha}$の最小値を求めよ。
この動画を見る 

【数Ⅲ】微分法の応用:平均値の定理の定番問題の解説

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
α、β:実数
次の不等式を証明せよ。
|sinα-sinβ|≦|α-β|
(出典)数研出版 4STEP数学Ⅲより
定期テスト対策に活用してみてくださいね。
この動画を見る 

数Ⅲ微分!絶対に落としたくない問題です【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$に対して,$(1+x)^{\frac{1}{x}}<e<(1+x)^{\frac{1}{x}+1}$が成り立つことを示せ。
この動画を見る 

福田のわかった数学〜高校3年生理系108〜変化率(3)水の問題(2)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 変化率(3) 水の問題(2)\\
右図(※動画参照)のような直円錐の容器に水が満たされている。下側から2cm^3/秒\\
の割合で水が流出する。水面の高さが8cmになった瞬間の水面の下降する\\
速度と水面の面積が減少する速度を求めよ。\\ 
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系105〜絶対不等式(3)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 絶対不等式(3)\\
0 \leqq x \lt \frac{\pi}{2}であるすべてのxについて\\
\sin x\cos x \leqq kk(\sin^2x+3\cos^2x)\\
が成り立つような実数kの最小値を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系104〜絶対不等式(2)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 絶対不等式(2)\\
\sqrt x+\sqrt y \leqq k\sqrt{2x+y}\\
が任意の正の実数x,yに対して成り立つような実数k\\
の値の範囲を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系103〜絶対不等式(1)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 絶対不等式(1)\\
a^x \geqq x \\
が任意の正の実数xに対して成り立つような\\
正の定数aの値の範囲を求めよ。  
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系102〜大小比較(2)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 大小比較(2)\\
(1)x \gt 0のとき\log(1+\frac{1}{x})と\frac{1}{x+1}の大小を比較せよ。\\
(2)(1+\frac{2001}{2002})^{\frac{2002}{2001}}と(1+\frac{2002}{2001})^{\frac{2001}{2002}}の大小を比較せよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系101〜大小比較(1)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 大小比較(1)\\
999^{1000}と1000^{999}\\
の大小を比較せよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系100〜不等式の証明(7)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(7)\\
e^a(b-a) \lt e^b-e^a \lt e^b(b-a)\\
(ただし、a \lt b)
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系099〜不等式の証明(6)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(6)\hspace{170pt}\\
0 \lt a \lt b \lt \frac{\pi}{2}のとき、\frac{a}{b} \lt \frac{\sin a}{\sin b}が成り立つことを証明せよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系098〜不等式の証明(5)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(5)\\
b(\log a-\log b) \leqq a-b (a \gt 0, b \gt 0)を証明せよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(4)\\
(x+2)\log(x+1) \geqq 2x (x \geqq 0)を証明せよ。\\
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系096〜不等式の証明(3)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(3)\\
\sqrt{ab} \lt \frac{b-a}{\log b-\log a} \lt \frac{a+b}{2} (0 \lt a \lt b)を証明せよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系095〜不等式の証明(2)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(2)\\
x\log x \geqq (x-1)\log(x+1) (x \geqq 1)を証明せよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系094〜不等式の証明(1)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(1)\hspace{100pt}\\
\cos x \lt 1-\frac{x^2}{2}+\frac{x^4}{24} (x \gt 0)を証明せよ。
\end{eqnarray}
この動画を見る 

【数Ⅲ】微分法:媒介変数で表された関数の2回微分

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
xの関数yが、θを媒介変数として、x=cosθ-1、y=2sinθ+1と表される時、d²y/dx²をθの関数として表そう。
この動画を見る 

【数Ⅲ】微分法:sinを微分するとどうなる??グラフのイメージでサクッとわかる♪

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
sinを微分するとどうなる??
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第4問〜はさみうちの原理と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\hspace{240pt}\\
(1)aは0 \lt a \leqq \frac{1}{2}を満たす定数とする。x \geqq 0の範囲で不等式\\
a\left(x-\frac{x^2}{4}\right) \leqq \log(1+ax) が成り立つことを示しなさい。\\
\\
(2)bを実数の定数とする。x \geqq 0の範囲で不等式\\
\log\left(1+\frac{1}{2}x\right) \leqq bx\\
が成り立つようなbの最小値は\boxed{\ \ タ\ \ }である。\\
\\
(3)nとkを自然数とし、I(n,k)=\lim_{t \to +0}\int_0^{\frac{k}{n}}\frac{\log\left(1+\displaystyle\frac{1}{2}tx\right)}{t(1+x)}dx\\
とおく。I(n,k)を求めると、I(n,k)=\boxed{\ \ チ\ \ }である。また\\
\lim_{n \to \infty}\frac{1}{n}\sum_{k=1}^nI(n,k)=\boxed{\ \ ツ\ \ } である。
\end{eqnarray}
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} tを実数とし、座標平面上の直線l:(2t^2-4t+2)x-(t^2+2)y+4t+2=0\\
を考える。\\
\\
(1)直線lはtの値によらず、定点を通る。その定点の座標は\boxed{\ \ ア\ \ }である。\\
\\
(2)直線lの傾きをf(t)とする。f(t)の値が最小となるのはt=\boxed{\ \ イ\ \ }\\
のときであり、最大となるのはt=\boxed{\ \ ウ\ \ }のときである。また、\\
aを実数とするとき、tに関する方程式f(t)=aがちょうど1個の\\
実数解をもつようなaの値を全て求めると、a=\boxed{\ \ エ\ \ }である。\\
\\
(3)tが実数全体を動くとき、直線lが通過する領域をSとする。またkを\\
実数とする。放物線y=\frac{1}{2}(x-k)^2+\frac{1}{2}(k-1)^2が領域Sと共有点\\
を持つようなkの値の範囲は\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }である。
\end{eqnarray}
この動画を見る 

【数Ⅲ】微分法: 微分係数の利用! f'(a)が存在するとき、次の極限をf(a),f'(a)で表せ。(1)lim(h→0){f(a+4h)-f(a+2h)}/h

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
f'(a)が存在するとき、次の極限をf(a),f'(a)で表せ。
(1)lim(h→0){f(a+4h)-f(a+2h)}/h
この動画を見る 
PAGE TOP