【高校数学】2次方程式3 5 ~例題で学ぶ判別式D~ 2-9.5【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】2次方程式3 5 ~例題で学ぶ判別式D~ 2-9.5【数学Ⅰ】

問題文全文(内容文):
(1)2次方程式x²-6x+m=0が異なる2つの実数解をもつように、定数mの値の範囲を求めよ。

(2)2次方程式x²-mx+2=0が重解をもつように、定数mの値を定めよ。

(3)2次関数y=-x²+2x+mのグラフとx軸の共有点の個数は、定数mの値によってどのように
  変わるか。
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)2次方程式x²-6x+m=0が異なる2つの実数解をもつように、定数mの値の範囲を求めよ。

(2)2次方程式x²-mx+2=0が重解をもつように、定数mの値を定めよ。

(3)2次関数y=-x²+2x+mのグラフとx軸の共有点の個数は、定数mの値によってどのように
  変わるか。
投稿日:2018.10.11

<関連動画>

【数学Ⅰ】命題と集合 14分でまとめ(高1〜2で見ても意味わからんけど、高3にはハマるはず)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅰ】命題と集合まとめ動画です
-----------------
(1) $x=2→x^2=4$の真偽は?

(2) $xy=0→x=0$または$y=0$の真偽は?

(3) $x$を実数とすると$x=1→x^3=1$の真偽は?
  $x$を複素数とすると$x=1→x^3=1$の真偽は?
この動画を見る 

福田の1.5倍速演習〜合格する重要問題005〜一橋大学2015年文系数学第1問〜互いに素な自然数の個数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の整数とする。n以下の正の整数のうち、nとの最大公約数が1と
なるものの個数をE(n)で表す。たとえば
$E(2)=1,E(3)=2,E(4)=2,...,E(10)=4, ...$
である。
(1)E(1024)を求めよ。
(2)E(2015)を求めよ。
(3)mを正の整数とし、pとqを異なる素数とする。$n=p^mq^mのとき\frac{E(n)}{n}\geqq\frac{1}{3}$
が成り立つことを示せ。

2015一橋大学文系過去問
この動画を見る 

cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。

(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。

(3)$cos1°$が無理数であることを証明せよ。

数学入試問題過去問
この動画を見る 

福田のわかった数学〜高校1年生027〜いろいろなグラフ(1)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ いろいろなグラフ(1)
$f(x)=\left\{\begin{array}{1}
2x (0 \leqq x \leqq \frac{1}{2})\\
2-2x (\frac{1}{2} \leqq x \leqq 1)\\
\end{array}\right.$

(1)$y=f(x)$のグラフを描け。
(2)$y=f(f(x))$のグラフを描け。
この動画を見る 

【For you動画-17】  数Ⅰ-集合

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎U={x1xは、10以下の自然数}を全体集合
Uの部分集合A={1.2.5.6.9 }
B={3.8.9.10},C={1.3.4.9.10〕とする。

①$A \cup B=$
②$A \cap B$
③$\overline{ A } \cap B=$
④$\overline{ B \cup C}=$
⑤$(\overline{ A } \cap B)\cup C=$

◎◎U={x1xは10以下の自然数」を全体集合 とする。Uの部分集合A、Bについて、
$\overline{ A } \cap B ${4,5,10},$A \cap \overline{ B } ${3,8}
$\overline{ A } \cap \overline{ B } ${1,6,9}である。

⑥$A \cap B=$
⑦$A=$
⑧$A \cup B=$
この動画を見る 
PAGE TOP