福田の数学〜早稲田大学2021年商学部第2問〜空間図形の共通部分 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年商学部第2問〜空間図形の共通部分

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 図(※動画参照)のように、1辺の長さが2である立方体ABCD-EFGHの内側に、\\
正方形ABCDに内接する円を底面にもつ高さ2の円柱Vをとる。次の設問に答えよ。\\
(1)立方体の対角線AGと円柱Vの共通部分と得られる線分の長さを求めよ。\\
\\
(2)Wを三角柱ABC-DCGと三角柱AEH-BFGの共通部分とする。\\
円柱Vの側面とWの共通部分に含まれる線分の長さの最大値を求めよ。
\end{eqnarray}

2021早稲田大学商学部過去問
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 図(※動画参照)のように、1辺の長さが2である立方体ABCD-EFGHの内側に、\\
正方形ABCDに内接する円を底面にもつ高さ2の円柱Vをとる。次の設問に答えよ。\\
(1)立方体の対角線AGと円柱Vの共通部分と得られる線分の長さを求めよ。\\
\\
(2)Wを三角柱ABC-DCGと三角柱AEH-BFGの共通部分とする。\\
円柱Vの側面とWの共通部分に含まれる線分の長さの最大値を求めよ。
\end{eqnarray}

2021早稲田大学商学部過去問
投稿日:2021.06.12

<関連動画>

東大留年女子もっちゃんとオイラーの公式を学ぶ!最終章

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式に関して解説していきます.
$e=\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$

$e^{i \pi}=-1$
この動画を見る 

もっちゃんとオイラーの公式を学ぶ 数学の魔術師も出演

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式に関して解説していきます.
$e^{i \pi}=-1$
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第4問〜正八面体の内部に配置した6個の球の和集合の体積と共通部分の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$一辺の長さが$\sqrt3+1$である正八面体の頂点を右図(※動画参照)
のように$P_1,P_2,P_3,P_4,P_5,P_6$とする。$i=1,2,\ldots,6$に対して
$P_i$以外の5点を頂点とする四角錐のすべての面に
内接する球(内部含む)を$B_i$とする。$B_1$の体積をXとし、$B_1$と
$B_2$の共通部分の体積をYとし、$B_1,B_2,B_3$の共通部分の体積をZ
とする。さらに$B_1,B_2,\ldots,B_n$を合わせて得られる立体の体積を
$V_n\ \ (n=2,3,\ldots,6)$とする。以下の問いに答えよ。
(1)$V_n=aX+bY+cZ$となる整数a,b,cを$n=2,3,6$の場合
について求めよ。
(2)Xの値を求めよ。
(3)$V_2$の値を求めよ。

2022早稲田大学理工学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年商学部第3問〜空間図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標空間において、2つの円$C_1,\ C_2$を
$C_1=\left\{(x,y,0)\ | \ x^2+y^2=1\right\},\ C_2=\left\{(0,y,z)\ | \ (y-1)^2+z^2=1\right\}$
とする。次の設問に答えよ。
(1)$C_1$上の2点と$C_2$上の点(0,1,1)を頂点とする正三角形を考える。
このような正三角形の一辺の長さをすべて求めよ。
(2)すべての頂点がC_1∪C_2上にある正四面体を考える。
このような正四面体の一辺の長さをすべて求めよ。

2022早稲田大学商学部過去問
この動画を見る 

六角形バリアは不可能じゃね?

アイキャッチ画像
単元: #図形の性質#空間における垂直と平行と多面体(オイラーの法則)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
葬送のフリーレンのバリアなどで六角形で球を作っている件に関して解説していきます。
この動画を見る 
PAGE TOP