福田の数学〜早稲田大学2021年商学部第1問(3)〜相加相乗平均 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年商学部第1問(3)〜相加相乗平均

問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)正の実数$x,y,z$が
$\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1$
を満たすとき、$(x-1)(y-2)(z-3)$の最小値は$\boxed{\ \ ウ\ \ }$である。

2021早稲田大学商学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)正の実数$x,y,z$が
$\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1$
を満たすとき、$(x-1)(y-2)(z-3)$の最小値は$\boxed{\ \ ウ\ \ }$である。

2021早稲田大学商学部過去問
投稿日:2021.06.10

<関連動画>

福田の数学〜北海道大学2023年文系第1問〜関数方程式と剰余定理因数定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ P(x)をxについての整式とし、P(x)P(-x)=P($x^2$)はxについての恒等式であるとする。
(1)P(0)=0またはP(0)=1 であることを示せ。
(2)P(x)がx-1で割り切れないならば、P(x)-1はx+1で割り切れることを示せ。
(3)次数が2であるP(x)を全て求めよ。

2023北海道大学文系過去問
この動画を見る 

東工大 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$自然数、 $m \lt n,$ $0 \lt x \lt 1$

$(1+ \displaystyle \frac{x}{m^2})^m$と$(1+\displaystyle \frac{x}{n^2})^n$を大小比較せよ

出典:東京工業大学 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題082〜北海道大学2018年度理系第5問〜不等式の証明と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 2つの関数
f(x)=$\cos x$, g(x)=$\displaystyle\sqrt{\frac{\pi^2}{2}-x^2-\frac{\pi}{2}}$
がある。
(1)0≦x≦$\frac{\pi}{2}$のとき、不等式$\frac{2}{\pi}x$≦$\sin x$が成り立つことを示せ。
(2)0≦x≦$\frac{\pi}{2}$のとき、不等式g(x)≦f(x)が成り立つことを示せ。
(3)0≦x≦$\frac{\pi}{2}$の範囲において、2つの曲線y=f(x), y=g(x)およびy軸が囲む部分の面積を求めよ。

2018北海道大学理系過去問
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(1)〜相加平均と相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$x \gt 0$における$(x+\frac{1}{x})(x+\frac{2}{x})$の最小値は$\boxed{ア}$である。

2021立教大学経済学部過去問
この動画を見る 

関西大 整式の剰余 2つの解法で

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整式$P(x)$を$x^2-1$で割ると余りは$x-3$であり,$x^2+1$で割ると余りは$-x+5$である.
$P(x)$を$x^4-1$で割った余りを2通りの解法で求めよ

2001関西大過去問
この動画を見る 
PAGE TOP