福田のわかった数学〜高校2年生027〜定点通過(直線群、円群) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生027〜定点通過(直線群、円群)

問題文全文(内容文):
数学$\textrm{II}$ 定点通過(直線群・円群)
2つの円$ x^2+y^2-4x-2y=0\ldots①,$
$x^2+y^2-x+y-6=0\ldots②$
の交点を$\rm A,B$とするとき、次を求めよ。
(1)直線$\rm AB$  (2)$\rm A,B,(6,0)$を通る円
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 定点通過(直線群・円群)
2つの円$ x^2+y^2-4x-2y=0\ldots①,$
$x^2+y^2-x+y-6=0\ldots②$
の交点を$\rm A,B$とするとき、次を求めよ。
(1)直線$\rm AB$  (2)$\rm A,B,(6,0)$を通る円
投稿日:2021.06.01

<関連動画>

福田のおもしろ数学116〜円の内部の点(a,b)に対してax+by=r^2はどんな直線を表しているか

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ の内部の点($a$,$b$)に対して直線$ax$+$by$=$r^2$ はどんな直線か。ただし、($a$,$b$)$\ne$(0,0)とする。
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(5)直線群と軌跡、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$x+5y-7=0$ $\cdots$①, $2x-y-4=0$ $\cdots$②の交点を通り、
直線$x+4y-6=0$ に垂直な直線の方程式を求めよ。

${\Large\boxed{2}}$ $m$が実数全体を動くとき、次の2直線の交点$P$はどんな図形を描くか。
$mx-y=0$ $\cdots$①  $x+my-m-2=0$ $\cdots$②
この動画を見る 

円を表す方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円を表す方程式
*図は動画内参照
この動画を見る 

【高校数学】 数Ⅱ-62 円と直線①

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の円の方程式を求めよう。

①中心が(1、2)、半径が3

②中心が原点、半径が4

③中心が(-1.2)で原点を通る

④中心が(-2.3)でX軸に接する

⑤中心が(4.-1)で点(1.1)を通る

⑥直径の両端が(-1.3). (1.-5)
この動画を見る 
PAGE TOP