福田のわかった数学〜高校3年生理系025〜極限(25)関数の極限、三角関数の極限(5) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系025〜極限(25)関数の極限、三角関数の極限(5)

問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(5)
$\lim_{x \to 0}\displaystyle \frac{\tan x°}{x}$ を求めよ。
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(5)
$\lim_{x \to 0}\displaystyle \frac{\tan x°}{x}$ を求めよ。
投稿日:2021.05.31

<関連動画>

大学入試問題#477「よくある極限の問題」  藤田医科大学(2023) #極限

アイキャッチ画像
単元: #関数と極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(e^x-1)log(4x+1)}{x^2}$

出典:2023年藤田医科大学 入試問題
この動画を見る 

福田のわかった数学〜高校3年生理系041〜極限(41)有名な極限の証明(1)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 有名な極限を証明(1)
(1)$x \gt 0$で$e^x \gt 1+x+\dfrac{x^2}{2}$ を示せ。
(2)$\displaystyle \lim_{x \to \infty}xe^{-x}$ を求めよ。
この動画を見る 

福田の数学〜上智大学2023年理工学部第2問〜逆関数の微分積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 関数$f(x)$=$\sin x$ $\left(0≦x≦\frac{\pi}{2}\right)$の逆関数を$g(x)$とする。
(1)関数$g(x)$の定義域は$\boxed{\ \ え\ \ }$である。
(2)$y$=$g(x)$の$x$=$\frac{4}{5}$における接線の傾きは$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$である。
(3)$\displaystyle\int_0^{\frac{1}{2}}g(x)dx$=$\displaystyle\frac{\pi}{\boxed{\ \ キ\ \ }}$+$\boxed{\ \ ク\ \ }$+$\displaystyle\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\sqrt{\boxed{\ \ サ\ \ }}$である。
(4)$y$=$g(x)$のグラフと$x$=1および$x$軸で囲まれた図形を$x$軸のまわりに1回転させてできる立体の体積は$\displaystyle\frac{\pi^a}{\boxed{\ \ シ\ \ }}$+$\boxed{\ \ ス\ \ }\pi$ ただし$a$=$\boxed{\ \ セ\ \ }$である。
この動画を見る 

こう見えても高校内容です。

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 数学を数楽に
問題文全文(内容文):
$y=\frac{x^2}{x}$のグラフをかけ
この動画を見る 

【数Ⅲ】 極限:r^nの極限を含むグラフの概形

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数の極限:$r^n$の極限:次の関数のグラフの概形をかき、関数の連続性を調べよう
$f(x)=\displaystyle \lim_{x\to\infty}\dfrac{x^{2n-1}+x+2}{x^{2n}+1}$
この動画を見る 
PAGE TOP