福田の数学〜早稲田大学2021年理工学部第4問〜場合の数と確率 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年理工学部第4問〜場合の数と確率

問題文全文(内容文):
${\Large\boxed{4}}$ $n,k$を$2$以上の自然数とする。$n$個の箱の中に$k$個の玉を無作為に入れ、各箱に入った玉の
個数を数える。その最大値と最小値の差がlとなる確率を$P_l(0 \leqq l \leqq k)$とする。
(1)$n=2,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

(2)$n \geqq 2,$ $k=2$のとき、$P_0,P_1,P_2$を求めよ。

(3)$n \geqq 3,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

2021早稲田大学理工学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ $n,k$を$2$以上の自然数とする。$n$個の箱の中に$k$個の玉を無作為に入れ、各箱に入った玉の
個数を数える。その最大値と最小値の差がlとなる確率を$P_l(0 \leqq l \leqq k)$とする。
(1)$n=2,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

(2)$n \geqq 2,$ $k=2$のとき、$P_0,P_1,P_2$を求めよ。

(3)$n \geqq 3,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

2021早稲田大学理工学部過去問
投稿日:2021.05.27

<関連動画>

福田の数学〜慶應義塾大学2021年総合政策学部第6問〜期待値から経営戦略を立てる

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$A社はB氏を報酬wで雇っている(wは正の実数)。A社の売り上げはB氏の努力水準に
依存しており、B氏の努力水準が低いとA社の売り上げは200だが、B氏の努力水準が
高い場合、A社の売り上げは70%の確率で500となり、30%の確率で200のままとなる。
そして、このことはB氏も知っている。ただし、B氏は努力水準を高める際に17.5の
苦痛を感じる。そのため、報酬wの下で努力水準を高めると、B氏の実質的な報酬は
w-17.5となってしまう。B氏は完全にテレワークをしており、B氏の努力水準を
A社が直接知ることはできないし、B氏が努力水準を高めるように強制することも
できない。すると$w \gt w-17.5$であることから、B氏は努力水準を高めないことが
合理的な行動となる。
以下では、不確実性下の意思決定を扱っているが(1),(2),(3)のいずれにおいても、
A社、B氏共に期待値の大小のみに関心があるものと仮定して解答すること。

(1)いま、A社は売上が500になったあときにはB氏の報酬を$w_1$に引き上げ、200のとき
には$w_0$に据え置くアイデアを思いついた。B氏が努力水準を高めるには、
$w_1 \geqq w_0+\boxed{\ \ アイウ\ \ }.\boxed{\ \ エオ\ \ }$である必要がある。

次に、B氏は、A社をやめても他の会社に報酬100で雇われることが可能であるとする。
(2)A社の利潤を売上からB氏への報酬を引いた残りだと単純化すると、$w_1$と$w_0$を適切に
定めることにより、B氏にA社をやめさせず、かつ努力水準を高めさせるためには、
A社の利潤の期待値を$\boxed{\ \ カキク\ \ }.\boxed{\ \ ケコ\ \ }$以下とする必要がある。
また、A社の利潤の期待値が最大化された時、$w_1:w_0=5:4$を満たす$w_0$の値は
$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$

以下では、B氏の$w_0$の値をこの$w_0$の値をこの$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$とする。
(3)実は、B氏の関心は報酬wそのものではなく、そこから得られる満足と解釈される
$10\sqrt w$であることが分かった。そのため、努力水準を高める際の苦痛17.5もこの値
から差し引かれ、努力水準を高めたときのB氏の満足は$10\sqrt w-17.5$となる。
B氏は(実質的な)報酬を最大化する人ではなく、満足を最大化する人だとしたとき、
B氏にA社をやめさせず、かつ努力水準を高めさせえるためには、$w_1 \geqq \boxed{\ \ タチツ\ \ }.\boxed{\ \ テト\ \ }$

2021慶應義塾大学総合政策学部過去問
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 白石と黒石を手元にたくさん用意する。表が白色、裏が黒色の硬貨1枚を用いて、机の上で以下の操作を繰り返し行う。ただし、最初の操作は机の上に石が1個もない状態から始めるものとする。
操作:効果を投げ、出た色と異なる色の石が机の上にあればその中の1個を取り除き、なければ出た色と同じ色の石を手元から机の上に1個置く。
とくに、机の上に石が1個もなければ、次の回の操作では出た色と同じ色の石を手元から机の上に1個置く。
(1)3回目の操作後に机の上に石がちょうど3個ある確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(2)6回目の操作後に机の上に石がちょうど2個ある確率は$\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}$であり、石が1個もない確率は$\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ クケ\ \ }}$である。
(3)6回目の操作後に机の上にある石が2個以下であったときに、8回目の操作後に机の上にある石も2個以下である条件付き確率は$\frac{\boxed{\ \ コサ\ \ }}{\boxed{\ \ シス\ \ }}$である。
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(4)〜表が連続して出ない確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
コインを5回投げるとき、表が連続して2回以上出ない確率を求めよ。
ただし、コインを1回投げたとき、 表が出る確率および裏が出る確率はそれぞれ1/2であるとする。

2022立教大学経済学部過去問
この動画を見る 

【高校数学】  数A-20  確率② ・ さいころ編Part.2

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎3個のさいころを同時に投げるとき、次の場合の確率は?

①出る目の最大値が5以下
②出る目の最大値が5
③出る目の最小値が3
④出る目の最大値が3以上5以下
この動画を見る 
PAGE TOP