【高校数学】微分⑤~微分を用いた最大値・最小値~ 6-11【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】微分⑤~微分を用いた最大値・最小値~ 6-11【数学Ⅱ】

問題文全文(内容文):
y=- 2x³+3x²+12x(-2≦x≦4)の最大値と最小値を求めよ。
単元: #微分法と積分法#接線と増減表・最大値・最小値
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
y=- 2x³+3x²+12x(-2≦x≦4)の最大値と最小値を求めよ。
投稿日:2019.03.15

<関連動画>

青山学院大 4次関数の接線 積分公式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+2x^3-3x^2-2x-4$と$y=ax+b$が異なる2点で接している

(1)
$a,b$の値を求めよ

(2)
$f(x)$と$y=ax+b$で囲まれる面積を求めよ

出典:1994年青山学院大学 過去問
この動画を見る 

名古屋大 積分 面積公式の証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
名古屋大学過去問題
$C:y=x^3-3x^2+2x$
原点を通り、原点以外でCと接する直線l
lとCで囲まれた部分の面積
この動画を見る 

東大 微分 代講ヨビノリたくみ Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'98東京大学過去問題
aは0でない実数
関数
$f(x)=(3x^2-4)(x-a+\frac{1}{a})$の極大値と極小値の差が最小となるaを求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第5問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ 関数f(x)をf(x)=(x+1)(|x-1|-1)+2で定める。\\
(1)y=f(x)のグラフをかきなさい。\\
(2)kを実数とする。このとき、方程式f(x)=kが異なる3つの実数解\\
をもつようなkの値の範囲は\boxed{\ \ ア\ \ }である。\\
(3)曲線y=f(x)上の点P(0,f(0))における接線lの方程式はy=\boxed{\ \ イ\ \ }である。\\
また、曲線y=f(x)と直線lは2つの共有点をもつが、点Pとは異なる共有点を\\
Qとするとき、点Qのx座標は\boxed{\ \ ウ\ \ }である。さらに、曲線y=f(x)と直線lで\\
囲まれた図形の面積は\boxed{\ \ エ\ \ }である。\\
(4)関数F(x)をF(x)=\int_0^xf(t)dtで定める。このとき、F'(x)=0を満たすxを\\
すべて求めるとx=\boxed{\ \ オ\ \ }である。これより、関数F(x)は\\
x=\boxed{\ \ カ\ \ }で最小値\ \boxed{\ \ キ\ \ }\ をとることがわかる。\\
\end{eqnarray}

2022慶應義塾大学看護医療学科過去問
この動画を見る 

光文社新書「中学の知識でオイラー公式がわかる」Vol12 eとは何か前編

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$e=\displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{n})^n$

②$y=e^x$ $y^1=e^x$

③$y=e^x$
 $(0,1)$における接線の傾きが1

④$(log_ex)^1=\displaystyle \frac{1}{x}$
この動画を見る 
PAGE TOP