【高校数学】微分5.5~例題・微分を用いた最大最小・基礎~ 6-12【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】微分5.5~例題・微分を用いた最大最小・基礎~ 6-12【数学Ⅱ】

問題文全文(内容文):
(1) y=-2x³+6x²-8(-2<x≦1)の最大値・最小値を求めよ。
(2)1辺が12cmの正方形の厚紙の四隅から、合同な正方形を切り取った残りで、
  ふたのない長方形の箱を作る。
  箱の容積を最大にするには、切り取る正方形の1辺を何cmにすればよいか。
単元: #微分法と積分法#接線と増減表・最大値・最小値
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) y=-2x³+6x²-8(-2<x≦1)の最大値・最小値を求めよ。
(2)1辺が12cmの正方形の厚紙の四隅から、合同な正方形を切り取った残りで、
  ふたのない長方形の箱を作る。
  箱の容積を最大にするには、切り取る正方形の1辺を何cmにすればよいか。
投稿日:2019.03.27

<関連動画>

【高校数学】微分4.5~例題・増減表と極値・応用~ 6-10【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)関数$y=x^4-2x^2$の極値を求め、そのグラフをかけ。

(2)関数$f(x)=x^3+ax^2+bx^2-2$が$x=-1$で極大値をとり、$x=3$で極小値を
  とるように、定数$a,b$の値を定めよ。また、極値を求めよ。

(3)関数$f(x)=x^3-3x^2+ax$が$x=1$で極値をとるように定数$a$の値を定めよ
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察2(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の不等式を証明せよ。また、等号が成立する条件を求めよ。
ただし、a,b,c,dは全て正の数であるとする。
(1) $\displaystyle \frac{a+b}{2} \geqq \sqrt{ab}$

(2) $\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$

(3) $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$
この動画を見る 

【高校数学】 数Ⅱ-163 関数のグラフと方程式・不等式②

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎3次方程式$x^3+3x^2-a=0$について、次の問いに答えよう。

①異なる3個の実数解をもつように、定数aの値の範囲を定めよう。

②異なる2個の実数解をもつように、定数aの値を定めよう。

③ただ1個の実数解をもつように、定数aの値の範囲を定めよう。
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$直線$x+y=1$に接する楕円$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)$がある。
このとき、$b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }$である。
この楕円を直線$y=b$のまわりに1回転してできる立体の体積は、
$a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$のとき、
最大値$\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2$をとる。

2022早稲田大学人間科学部過去問
この動画を見る 

高専数学 微積I #218 曲線の長さの最小値 (九州大学類題)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=\dfrac{e^x+e^{-x}}{2} \ (\alpha \leqq x \leqq \alpha+1)$
の曲線の長さ$k(\alpha)$の最小値を求めよ.
この動画を見る 
PAGE TOP