【高校数学】共通テスト(プレテスト)大問1の[2]~ちゃっちゃと解説~【数学ⅠA】 - 質問解決D.B.(データベース)

【高校数学】共通テスト(プレテスト)大問1の[2]~ちゃっちゃと解説~【数学ⅠA】

問題文全文(内容文):
共通テスト(プレテスト)【数学ⅠA】解説動画です
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通テスト(プレテスト)【数学ⅠA】解説動画です
投稿日:2019.09.16

<関連動画>

共通テスト2日目_ふきふき占い【午後も頑張れ】

アイキャッチ画像
単元: #大学入試過去問(数学)#物理#化学#生物#情報Ⅰ(高校生)#センター試験・共通テスト関連#共通テスト#大学入試過去問(物理)#大学入試過去問(化学)#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#大学入試過去問(英語)#大学入試過去問(国語)#共通テスト#共通テスト(現代文)#大学入試過去問(生物)#共通テスト・センター試験#共通テスト(古文)#共通テスト#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学(高校生)#理科(高校生)#共通テスト#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第1問〜2次関数と三角比

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1] $a,b$を定数とするとき、$x$についての不等式
$|ax-b-7| \lt 3$ $\cdots$①
を考える。
(1)$a=-3,b=-2$とする。①を満たす整数全体の集合を$P$とする。
この集合$P$を、要素を書き並べて表すと
$P=\left\{\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }\right\}$
となる。ただし、$\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }$の解答の順序は問わない。

(2)$a=\displaystyle \frac{1}{\sqrt2}$とする。
$(\textrm{i})b=1$のとき、①を満たす整数は全部で$\boxed{\ \ オ\ \ }$個である。
$(\textrm{ii})$①を満たす整数が全部で$(\boxed{\ \ オ\ \ }+1)$個であるような正の整数$b$
のうち、最小のものは$\boxed{\ \ カ\ \ }$である。

[2]平面上に2点$A,B$があり、$AB=8$である。直線$AB$上にない点$P$をとり、
$\triangle ABP$をつくり、その外接円の半径を$R$とする。
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点$P$
をいろいろな位置に取った。
図1は、点$P$をいろいろな位置にとったときの$\triangle$の外接円をかいたものである。

(1)太郎さんは、点$P$のとり方によって外接円の半径が異なることに気づき、
次の問題1を考えることにした。

問題1:点$P$をいろいろな位置にとるとき、外接円の半径$R$が最小となる
$\triangle ABP$はどのような三角形か。
正弦定理により、$2R=\displaystyle \frac{\boxed{\ \ キ\ \ }}{\sin\angle APB}$である。よって、
Rが最小となるのは$\angle APB=\boxed{\ \ クケ\ \ }°$の三角形である。
このとき、$R=\boxed{\ \ コ\ \ }$である。


(2)太郎さんは、図2(※動画参照)のように、問題1の点$P$のとり方に
条件を付けて、次の問題2を考えた。

問題2:直線$AB$に平行な直線を$l$とし、直線l上で点$P$をいろいろな
位置にとる。このとき、外接円の半径$R$が最小となる$\triangle ABP$は
どのような三角形か。

太郎さんは、この問題を解決するために、次の構想を立てた。

問題2の解決の構想
問題1の考察から、線分$AB$を直径とする円を$C$とし、円$C$に着目
する。直線lは、その位置によって、円$C$と共有点を持つ場合と
もたない場合があるので、それぞれの場合に分けて考える。

直線$AB$と直線lとの距離を$h$とする。直線lが円$C$と共有点を
持つ場合は、$h \leqq \boxed{\ \ サ\ \ }$のときであり、共有点をもたない場合は、
$h \gt \boxed{\ \ サ\ \ }$のときである。

$(\textrm{i})h \leqq \boxed{\ \ サ\ \ }$のとき
直線$l$が円$C$と共有点をもつので、$R$が最小となる$\triangle ABP$は、
$h \lt \boxed{\ \ サ\ \ }$のとき$\boxed{\boxed{\ \ シ\ \ }}$であり、$h=\boxed{\ \ サ\ \ }$のとき直角二等辺三角形
である。

$(\textrm{ii})h \gt \boxed{\ \ サ\ \ }$のとき
線分$AB$の垂直二等分線を$m$とし、直線$m$と直線$l$との交点を$P_1$とする。
直線$l$上にあり点$P_1$とは異なる点を$P_2$とするとき$\sin\angle AP_1B$
と$\sin\angle AP_2B$の大小を考える。
$\triangle ABP_2$の外接円と直線$m$との共有点のうち、直線$AB$に関して点$P_2$
と同じ側にある点を$P_3$とすると、$\angle AP_3B \boxed{\boxed{\ \ ス\ \ }}\angle AP_2B$である。
また、$\angle AP_3B \lt \angle AP_1B \lt 90°$より$\sin \angle AP_3B \boxed{\boxed{\ \ セ\ \ }}\angle AP_1B$である。
このとき$(\triangle ABP_1$の外接円の半径$) \boxed{\boxed{\ \ ソ\ \ }} (\triangle ABP_2$の外接円の半径)
であり、$R$が最小となる$\triangle ABP$は$\boxed{\boxed{\ \ タ\ \ }}$である。

$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ タ\ \ }}$については、最も適当なものを、次の⓪~④のうち
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
⓪鈍角三角形 ①直角三角形 ②正三角形
③二等辺三角形 ④直角二等辺三角形

$\boxed{\boxed{\ \ ス\ \ }}~\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$

(3)問題2の考察を振り返って、$h=8$のとき、$\triangle ABP$の外接円の半径$R$
が最小である場合について考える。このとき、$\sin\angle APB=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$R=\boxed{\ \ テ\ \ }$である。

2021共通テスト過去問
この動画を見る 

国語・数学記述式を共通テストに導入する危険性【専門家達の意見】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#国語(高校生)#大学入試過去問(国語)#共通テスト(現代文)#共通テスト(古文)#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
共通テストの国語、数学に記述式解答を導入した場合の危険性について語ります。
この動画を見る 

【高校数学】共通テスト(プレテスト)大問1の[1]~ちゃっちゃと解説~【数学ⅠA】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通テスト(プレテスト)の解説動画です
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第2問(2)【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学1A 第2問(2)解説していきます.
この動画を見る 
PAGE TOP