問題文全文(内容文):
学習院大学過去問題
数列$\{ a_n \}$の初項から第n項までの和を$S_n$とする
$S_n=2n^2+n-a_n$
$a_n$の一般項を求めよ
学習院大学過去問題
数列$\{ a_n \}$の初項から第n項までの和を$S_n$とする
$S_n=2n^2+n-a_n$
$a_n$の一般項を求めよ
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#学習院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
数列$\{ a_n \}$の初項から第n項までの和を$S_n$とする
$S_n=2n^2+n-a_n$
$a_n$の一般項を求めよ
学習院大学過去問題
数列$\{ a_n \}$の初項から第n項までの和を$S_n$とする
$S_n=2n^2+n-a_n$
$a_n$の一般項を求めよ
投稿日:2023.07.02