e話 - 質問解決D.B.(データベース)

e話

問題文全文(内容文):
$e=\displaystyle\lim_{n \to \infty}(1+\frac{1}{n})^n$
$\displaystyle\lim_{n \to -\infty}(1+\frac{1}{n})^n=e$を示せ
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$e=\displaystyle\lim_{n \to \infty}(1+\frac{1}{n})^n$
$\displaystyle\lim_{n \to -\infty}(1+\frac{1}{n})^n=e$を示せ
投稿日:2023.06.18

<関連動画>

数学「大学入試良問集」【17−1 隣接三項間漸化式と極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学#東京医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=1,a_2=2,n \geqq 3$のとき$a_n=\displaystyle \frac{1}{5}(3a_{n-1}+2a_{n-2})$で定義される数列$\{a_n\}$の極限値を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題060〜早稲田大学2019年度教育学部第3問〜区分求積と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (1)m,nを自然数とし、$n \geqq 2$とする。このとき、
$\log\left(1+\displaystyle\frac{n}{m}\right) \lt \displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k} \lt \log\left(1+\displaystyle\frac{n}{m}\right)+\displaystyle\frac{n}{m(m+n)}$
を証明せよ。ただし、$\displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k}=\displaystyle\frac{1}{m}+\displaystyle\frac{1}{m+1}+\cdots+\displaystyle\frac{1}{m+n-1}$とする。
(2)2以上の自然数$n$に対して
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{(2n+k)(n+1-k)}$
$b_n=\displaystyle\frac{\log n}{n}$
とおく。$\displaystyle\lim_{n \to \infty}\frac{a_n}{b_n}$を求めよ。

2019早稲田大学教育学部過去問
この動画を見る 

慶應義塾大(医)数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.これを解け.
$a_n=\sqrt{n^2+n+5}$
$\displaystyle \lim_{n\to \infty}(a_n-[a_n])$

慶應(医)過去問
この動画を見る 

難易度バリ高の極限 by 餃子n人前さん ※作成者の解答を参考に動画を作成しています。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1,$ $a_{n+1}+a_n=\displaystyle \frac{1}{n}$のとき、
$\displaystyle \lim_{ n \to \infty } |na_n|$を求めよ
この動画を見る 

福田のおもしろ数学130〜合成関数の性質

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)$=$ax$+$b$, $g(x)$=$cx$+$d$ ($a$≠0, $c$≠0)とする。このとき次の条件を満たす関数$h(x)$, $k(x)$を求めよ。
(1)$g(h(x))$=$f(x)$ (2)$k(g(x))$=$f(x)$ 
この動画を見る 
PAGE TOP