【高校数学】重複順列の例題を一緒に解こう~これだけはできて~ 1-9.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】重複順列の例題を一緒に解こう~これだけはできて~ 1-9.5【数学A】

問題文全文(内容文):
1⃣
(1) 5題の問題に○、×で答えるとき、○×のつけ方は何通りあるか。

(2) 3個の数字0,1,2を重複を許して用いてできる5桁の整数は何個か。

(3) A,B 2つの箱に異なる10個の玉を入れる方法は何通りあるか。
  箱の中に少なくとも1個の玉は入れるものとする。

-----------------

2⃣
(1) 8人を2つの部屋A,Bに入れる方法は何通りあるか。
  ただし、1人も入らない部屋があってもよいものとする。

(2) 8人を2つのグループA, Bに分ける方法は何通りあるか。

(3) 8人を2つのグループに分ける方法は何通りあるか。
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
(1) 5題の問題に○、×で答えるとき、○×のつけ方は何通りあるか。

(2) 3個の数字0,1,2を重複を許して用いてできる5桁の整数は何個か。

(3) A,B 2つの箱に異なる10個の玉を入れる方法は何通りあるか。
  箱の中に少なくとも1個の玉は入れるものとする。

-----------------

2⃣
(1) 8人を2つの部屋A,Bに入れる方法は何通りあるか。
  ただし、1人も入らない部屋があってもよいものとする。

(2) 8人を2つのグループA, Bに分ける方法は何通りあるか。

(3) 8人を2つのグループに分ける方法は何通りあるか。
投稿日:2020.05.25

<関連動画>

場合の数 組み合わせ応用②【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・円に内接する八角形の3個の頂点を結んで三角形を作る。
(1)八角形と一辺だけを共有する三角形は何個あるか。
(2)八角形と辺を共有しない三角形は何個あるか。

・1から20までの20個の整数から、異なる3個を選んで組を作る。
(1)奇数だけを含んでいる組は何通りできるか。
(2)奇数も偶数も含んでいる組は何通りできるか。
(3)3個の数の和が奇数となる組は何通りできるか。
この動画を見る 

硬貨を使って250円にする方法は何通り? 初芝富田林

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
10円,50円,100円の硬貨を使って250円にする方法は全部で何通り?
(1枚も使わない硬貨があってもよい)

2023初芝富田林高等学校
この動画を見る 

福田の数学〜名古屋大学2022年理系第2問〜互いに素になるような確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
1つのサイコロを3回投げる。1回目に出る目をa、2回目に出る目をb、
3回目に出る目をcとする。なおサイコロは1から6までの目が等しい確率で出るもの
とする。
(1)$ab+2c \geqq abc$となる確率を求めよ。
(2)$ab+2cと2abc$が互いに素となる確率を求めよ。

2022名古屋大学理系過去問
この動画を見る 

確率の基本問題

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022福岡教育大学過去問題
n=1,2,3,4,5,6
サイコロを3回振って出た目の最大値がnとなる確率を$P_n$
出た目の最小値がnとなる確率を$Q_n$
$P_n$,$Q_n$をnを用いて表せ
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part1

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は$\boxed{\ \ カ\ \ }$である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は$\boxed{\ \ キ\ \ }$である。
(2)$n$回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率を$p_n$とする。
$p_{n+1}$を$p_n$を用いて表すと$p_{n+1}$=$\boxed{\ \ ク\ \ }$となり、これより$p_n$を$n$を用いて表すと$p_n$=$\boxed{\ \ ケ\ \ }$となる。
(3)$n$回目($n$≧4)の操作を終えたとき、袋Aの中に$n-1$個以上の玉が入っている確率は$\boxed{\ \ コ\ \ }$であり、$n-2$個以上の玉が入っている確率は$\boxed{\ \ サ\ \ }$である。
この動画を見る 
PAGE TOP