共通テスト2021年数学詳しい解説〜共通テスト2021年IA第3問〜条件付き確率 - 質問解決D.B.(データベース)

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第3問〜条件付き確率

問題文全文(内容文):
${\large第3問}$
中にくじが入っている箱が複数あり、各箱の外見は同じであるが、当たりくじ
を引く確率は異なっている。くじ引きの結果から、どの箱からくじを引いた可能
性が対価を、条件付き確率を用いて考えよう。

(1)当たりくじを引く確率が$\displaystyle \frac{1}{2}$である箱Aと、当たりくじを引く確率が$\displaystyle \frac{1}{3}$
である箱$B$の二つの箱の場合を考える。

$(\textrm{i})$各箱で、くじを1本引いてはもとに戻す試行を3回繰り返したとき
箱Aにおいて、3回中ちょうど1回当たる確率は$\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$ $\cdots$①
箱Bにおいて、3回中ちょうど1回当たる確率は$\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$ $\cdots$②
である。

$(\textrm{ii})$まず、AとBのどちらか一方の箱をでたらめに選ぶ。次にその選んだ箱
において、くじを1本引いてはもとに戻す試行を3回繰り返したところ、3
回中ちょうど1回当たった。このとき、箱Aが選ばれる事象をA、箱Bが
選ばれる事象をB、3回中ちょうど1回当たる事象をWとすると
$P(A \cap W)=\displaystyle \frac{1}{2}×\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }},$$ P(B \cap W)=\displaystyle \frac{1}{2}×\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$
である。$P(W)=P(A \cap W)+P(B \cap W)$であるから。3回中ちょうど1
回当たった時、選んだ箱がAである条件付き確率$P_W(A)$は$\displaystyle \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$と
なる。また、条件付き確率は$P_W(B)$は$\displaystyle \frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$となる。
(2)(1)の$P_W(A)$と$P_W(B)$について、次の事実(*)が成り立つ。

事実(*)
$P_W(A)$と$P_W(B)$の$\boxed{\boxed{\ \ ス\ \ }}$は、①の確率と②の確率の$\boxed{\boxed{\ \ ス\ \ }}$
に等しい。

$\boxed{\boxed{\ \ ス\ \ }}$の解答群
⓪和 ①2乗の和 ②3乗の和 ③比 ④積

(3)花子さんと太郎さんは事実(*)について話している。
花子:事実(*)はなぜ成り立つのかな?
太郎:$P_W(A)$と$P_W(B)$を求めるのに必要な$P(A \cap W)$と$P(B \cap W)$
の計算で、①,②の確率に同じ数$\displaystyle \frac{1}{2}$をかけているからだよ。
花子:なるほどね。外見が同じ三つの箱の場合は、同じ数$\displaystyle \frac{1}{3}$をかける
ことになるので、同様のことが成り立ちそうだね。

当たりくじを引く確率が、$\displaystyle \frac{1}{2}$である箱$A$、$\displaystyle \frac{1}{3}$である箱$B$、$\displaystyle \frac{1}{4}$である箱
$C$の三つの箱の場合を考える。まず、$A,B,C$のうちどれか一つの箱
をでたらめに選ぶ。次にその選んだ箱において、くじを1本引いては
もとに戻す試行を3回繰り返したところ、3回中ちょうど1回当たった。
このとき、選んだ箱がAである条件付き確率は$\displaystyle \frac{\boxed{\ \ セソタ\ \ }}{\boxed{\ \ チツテ\ \ }}$となる。

(4)花子:どうやら箱が三つの場合でも、条件付き確率の$\boxed{\boxed{\ \ ス\ \ }}$は各箱で
3回中ちょうど1回当たりくじを引く確率の$\boxed{\boxed{\ \ ス\ \ }}$になっている
みたいだね。
太郎:そうだね。それを利用すると、条件付き確率の値は計算しなくて
も、その大きさを比較することができるね。

当たりくじを引く確率が、$\displaystyle \frac{1}{2}$である箱$A$、$\displaystyle \frac{1}{3}$である箱$B$、$\displaystyle \frac{1}{4}$である箱
$C$、$\displaystyle \frac{1}{5}$である箱$D$の四つの箱の場合を考える。まず、$A,B,C,D$のうち
どれか一つの箱をでたらめに選ぶ。次にその選んだ箱において、くじを
1本引いてはもとに戻す試行を3回繰り返したところ、3回中ちょうど
1回当たった。このとき、条件付き確率を用いて、どの箱からくじを
引いた可能性が高いかを考える。可能性が高い方から順に並べると
$\boxed{\boxed{\ \ ト\ \ }}$となる。
$\boxed{\boxed{\ \ ト\ \ }}$の解答群
⓪$A,B,C,D$
①$A,B,D,C$
②$A,C,B,D$
③$A,C,D,B$
④$A,D,B,C$
⑤$B,A,C,D$
⑥$B,A,D,C$
⑦$B,C,A,D$
⑧$B,C,D,A$

2021共通テスト過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
中にくじが入っている箱が複数あり、各箱の外見は同じであるが、当たりくじ
を引く確率は異なっている。くじ引きの結果から、どの箱からくじを引いた可能
性が対価を、条件付き確率を用いて考えよう。

(1)当たりくじを引く確率が$\displaystyle \frac{1}{2}$である箱Aと、当たりくじを引く確率が$\displaystyle \frac{1}{3}$
である箱$B$の二つの箱の場合を考える。

$(\textrm{i})$各箱で、くじを1本引いてはもとに戻す試行を3回繰り返したとき
箱Aにおいて、3回中ちょうど1回当たる確率は$\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$ $\cdots$①
箱Bにおいて、3回中ちょうど1回当たる確率は$\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$ $\cdots$②
である。

$(\textrm{ii})$まず、AとBのどちらか一方の箱をでたらめに選ぶ。次にその選んだ箱
において、くじを1本引いてはもとに戻す試行を3回繰り返したところ、3
回中ちょうど1回当たった。このとき、箱Aが選ばれる事象をA、箱Bが
選ばれる事象をB、3回中ちょうど1回当たる事象をWとすると
$P(A \cap W)=\displaystyle \frac{1}{2}×\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }},$$ P(B \cap W)=\displaystyle \frac{1}{2}×\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$
である。$P(W)=P(A \cap W)+P(B \cap W)$であるから。3回中ちょうど1
回当たった時、選んだ箱がAである条件付き確率$P_W(A)$は$\displaystyle \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$と
なる。また、条件付き確率は$P_W(B)$は$\displaystyle \frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$となる。
(2)(1)の$P_W(A)$と$P_W(B)$について、次の事実(*)が成り立つ。

事実(*)
$P_W(A)$と$P_W(B)$の$\boxed{\boxed{\ \ ス\ \ }}$は、①の確率と②の確率の$\boxed{\boxed{\ \ ス\ \ }}$
に等しい。

$\boxed{\boxed{\ \ ス\ \ }}$の解答群
⓪和 ①2乗の和 ②3乗の和 ③比 ④積

(3)花子さんと太郎さんは事実(*)について話している。
花子:事実(*)はなぜ成り立つのかな?
太郎:$P_W(A)$と$P_W(B)$を求めるのに必要な$P(A \cap W)$と$P(B \cap W)$
の計算で、①,②の確率に同じ数$\displaystyle \frac{1}{2}$をかけているからだよ。
花子:なるほどね。外見が同じ三つの箱の場合は、同じ数$\displaystyle \frac{1}{3}$をかける
ことになるので、同様のことが成り立ちそうだね。

当たりくじを引く確率が、$\displaystyle \frac{1}{2}$である箱$A$、$\displaystyle \frac{1}{3}$である箱$B$、$\displaystyle \frac{1}{4}$である箱
$C$の三つの箱の場合を考える。まず、$A,B,C$のうちどれか一つの箱
をでたらめに選ぶ。次にその選んだ箱において、くじを1本引いては
もとに戻す試行を3回繰り返したところ、3回中ちょうど1回当たった。
このとき、選んだ箱がAである条件付き確率は$\displaystyle \frac{\boxed{\ \ セソタ\ \ }}{\boxed{\ \ チツテ\ \ }}$となる。

(4)花子:どうやら箱が三つの場合でも、条件付き確率の$\boxed{\boxed{\ \ ス\ \ }}$は各箱で
3回中ちょうど1回当たりくじを引く確率の$\boxed{\boxed{\ \ ス\ \ }}$になっている
みたいだね。
太郎:そうだね。それを利用すると、条件付き確率の値は計算しなくて
も、その大きさを比較することができるね。

当たりくじを引く確率が、$\displaystyle \frac{1}{2}$である箱$A$、$\displaystyle \frac{1}{3}$である箱$B$、$\displaystyle \frac{1}{4}$である箱
$C$、$\displaystyle \frac{1}{5}$である箱$D$の四つの箱の場合を考える。まず、$A,B,C,D$のうち
どれか一つの箱をでたらめに選ぶ。次にその選んだ箱において、くじを
1本引いてはもとに戻す試行を3回繰り返したところ、3回中ちょうど
1回当たった。このとき、条件付き確率を用いて、どの箱からくじを
引いた可能性が高いかを考える。可能性が高い方から順に並べると
$\boxed{\boxed{\ \ ト\ \ }}$となる。
$\boxed{\boxed{\ \ ト\ \ }}$の解答群
⓪$A,B,C,D$
①$A,B,D,C$
②$A,C,B,D$
③$A,C,D,B$
④$A,D,B,C$
⑤$B,A,C,D$
⑥$B,A,D,C$
⑦$B,C,A,D$
⑧$B,C,D,A$

2021共通テスト過去問
投稿日:2021.01.19

<関連動画>

福田の数学〜早稲田大学2023年教育学部第1問(2)〜袋から球を取り出す確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)袋の中に赤玉5個と白玉5個が入っている。次の規則に従って袋から玉を無作為に取り出す。
ステップ1. 袋から玉を3個取り出す。
ステップ2. ステップ1で取り出した玉の中に含まれている赤玉の数と同じ数の玉を袋から取り出す。

このとき、2回取り出した玉の中で赤玉が合計3個となる事象の確率を求めよ。
ただし、ステップ1の後、取り出された玉を袋に戻さない。
この動画を見る 

【受験対策】数学-確率②

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
① 1.2.3.4.5の数字を1つずつ記入した5枚のカードがある。
このカードをよくきってから1枚ずつ2回続けて引き、引いた順に左から並べて2けたの整数をつくる。
このとき、できた2けたの整数が4の倍数である確率を求めよう。

② トランプのスペードのカードが1枚、ハート、ダイヤのカードがそれぞれ2枚ずつある。
この5枚のカードをよくきってから、2枚のカードを同時に取り出すとき、1枚はハートのカードで1枚はダイヤのカードとなる確率を求めよう。

③ 袋の中に、赤玉が2個、白玉が3個入っている。
この袋の中から、はじめにAさんが玉を1個取り出す。
取り出した玉を袋に戻さず、次にBさんが玉を1個取り出す。
このとき、2人の取り出した玉が異なる色であればAさんの勝ち、同じ色であればBさんの勝ちとする。
AさんとBさんのうちで勝ちやすいのはどちらか、次の㋐~㋒から正しいものを1つ選び、それが正しいことの理由を、2人の勝つ確率をもとに書こう。
ただし、どの玉が取り出されることも同様に確からしいものとする。

㋐ Aさん

㋑ Bさん

㋒ 2人とも同じ
この動画を見る 

福田のおもしろ数学172〜1000枚の1円玉を10個の袋に入れて1000円までのすべての金額が払えるようにする方法

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1000枚の1円玉を10個の袋に分けます。適当な袋を組み合わせて1円から1000円まですべてを表せるようにするにはどう分ければいい?
この動画を見る 

【数A】場合の数:岐阜大学2008年

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
7個の文字FGGIIUUを横1列に並べる。次の問いに答えよ。
(1)『GIFU』という連続 した4文字が現れるように並べる方法は何通りあるか。
(2)『GI』と『FU』という 連続した2文字がともに現れ、少なくとも1つの『GI』が『FU』よりも左にあるよ うに並べる方法は何通りあるか。
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第1問〜ソーシャルディスタンスを保つ座り方の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)ある公園に、図のように(※動画参照)10個の丸い椅子が、
東側に5個横一列に、西側に5個一列に、それぞれ1m間隔で置かれている。また東側の
椅子と西側の椅子は2つずつ背中合わせに置かれていて、その間隔は1mとなっている。
Aさんはいつも東側の椅子のいずれかに、Bさんは西側の椅子のいずれかに、
同じ確率で座る。このとき、AさんとBさんの座る日値がソーシャルディスタンスの
2m以上である確率は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。
なお、AさんもBさんも椅子の中心に座り、ソーシャルディスタンスは座っている
椅子の中心間の距離で測るものとする。
この動画を見る 
PAGE TOP